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Abstract: Each molecule has its own specialty, structure and function and when these molecules are combined together 
they form a compound. Structure and function of a molecule are related to each other and QSARs (Quantitative Structure–
Activity relationships) are based on the criteria that the structure of a molecule must contain the features responsible for 
its physical, chemical, and biological properties, and on the ability to represent the chemical by one, or more, numerical 
descriptor(s). By QSAR models, the biological activity of a new or untested chemical can be inferred from the molecular 
structure of similar compounds whose activities have already been assessed. QSARs attempt to relate physical and 
chemical properties of molecules to their biological activities. For this there are so many descriptors (for example, 
molecular weight, number of rotatable bonds, Log P) and simple statistical methods such as Multiple Linear Regression 
(MLR) are used to predict a model. These models describe the activity of the data set and can predict activities for further 
sets of (untested) compounds. These types of descriptors are simple to calculate and allow for a relatively fast analysis. 
3D-QSAR uses probe-based sampling within a molecular lattice to determine three-dimensional properties of molecules 
(particularly steric and electrostatic values) and can then correlate these 3D descriptors with biological activity. 
Physicochemical descriptors, include hydrophobicity, topology, electronic properties, and steric effects etc. These 
descriptors can be calculated empirically, statistically or through more recent computational methods. QSARs are 
currently being applied in many disciplines, with many pertaining to drug design and environmental risk assessment.  
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INTRODUCTION 

 Quantitative structure-activity relationship (QSAR) has 
been playing a major role in the field of agriculture 
chemistry, pharmacology, and toxicology since last few 
years [1]. With the help of QSAR, we can design new 
models and compare them with existing models or newly 
generated models to the biological databases. On the basis of 
similarity and dissimilarity, we can also conclude the 
relationship between these two. Quantitative structure-
activity relationship (QSAR) modeling is an area of research 
which was pioneered by Hansch and Fujita [2, 3]. The 
QSAR study assumes that the difference of the molecules in 
the structural properties experimentally measured accounts 
for the difference in their observed biological or chemical 
properties [4]. With the help of QSAR, it is now possible not 
only to develop a model for a system but also to compare 
models from a biological database and to draw analogies 
with models from a physical organic database [5]. QSAR is 
able to identify the relationship between a molecule and its 
structure and how the structure influences the activity of the 
molecule. There are few parameters like steric properties, 
electron distribution and hydrophobicity etc. In spite of this, 
minute analysis shows that there are some small parameters  
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which can affect the function of a molecule and are generally 
known as molecular descriptors. These descriptors are 
atomic descriptors and are derived from quantum chemical 
calculations and spectroscopy. [6]. High-throughput scre-
ening method allows fast screening of large number of 
dataset. It separates the molecule with similar structure and 
function. This method is very useful as it helps to minimize 
the risk of comparison between different dataset of variable 
sources. From a drug development to its mode of action all 
steps can be compared easily along with drug formulation by 
using this method. QSAR method does not only compare the 
dataset but also generates the data of their analogy [7]. More 
recently, QSAR has been extended by inclusion of 3D 
information. In drug discovery, it is common to have 
measured activity data for a set of compounds acting upon a 
particular protein, but not to have knowledge of the three 
dimensional (3D) structure of the active site. In the absence 
of such 3D information, one may attempt to build a 
hypothetical model of the active site that can provide insight 
into the nature of the latter. Three-dimensional approaches 
such as HypoGen and/or Hip Hop are useful in building 3D 
pharmacophore models from the activity data and 
conformational structure [8]. In spite of this, a new method 
of QSAR having a multiple field three-dimensional 
quantitative structure–activity relationship (MF-3D-QSAR), 
is proposed. It is a combination and advanced form of 
classical 2D-QSAR and traditional 3D-QSAR. In addition to 
the electrostatic and van der Waals potentials, more potential 
fields (such as lipophilic potential, hydrogen bonding 
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potential, and non-thermodynamic factors) are integrated in 
the MF-3D-QSAR [9].  
 Highly predictive QSAR and CoMFA models are being 
developed using the technique of structure-based alignments. 
These models explain the protein-ligand interactions and are 
found consistent with the crystal structure of protein with 
ligand. CoMFA (Comparative Molecular Field Analysis) has 
become one of the most powerful tools for QSAR and drug 
design. In fact, CoMFA has been pioneered as a new 
paradigm of three-dimensional QSAR where the shapes, 
properties, etc. of molecules are related to specific molecular 
features (substituents etc.) and their spatial relationship. The 
qualitative information of CoMFA contour maps gives key 
features on not only the ligand-receptor interaction but also 
on the topology of the receptor. However comparative 
molecular field analysis (CoMFA) is critically dependent on 
the conformation and alignment criteria for molecules, and 
thus among the plethora of methods available for 
superimposition, the pharmacophoric alignments are 
considered to be the best [10-16]. Three-dimensional 
quantitative structure-activity relationship (3D-QSAR) 
programs such as the Hypo Gen module of Catalyst [17, 18], 
Phase [19], CoMFA [20] and CoMSIA [21] are available. 
These tools predict the three-dimensional alignments of 
molecules to quantitatively predict the activity of 
compounds, on the basis of QSAR models fitted to the 
activity of an aligned training set of molecules. Such 3D 
models are more easily interpretable than 2D descriptor or 
fingerprint-based QSAR models. It should also be possible 
to make connections from such activity models to structure-
based design, either to add more information to overlays for 
the construction of a pharmacophore model [22, 23]. 
Quantitative structure–activity relationship (QSAR) 
represents an approach to correlate structural descriptors of 
compounds with their biological activities. Three-
dimensional quantitative structure activity–relationship (3D-
QSAR) studies provide deeper insight into the mechanism of 
action of compounds that ultimately becomes of great 
importance in modification of the structure of compounds. In 
addition, 3D-QSAR also provides quantitative models, 
which permits prediction of activity of compounds prior to 
the synthesis. Self organizing molecular field analysis 
(SOMFA) is a novel 3D-QSAR methodology which has 
been developed by Robinson et al. [24].  
 A pharmacophoric hypothesis collects common features 
distributed in three-dimensional space representing groups in 
a molecule that participate in important interactions between 
drugs and their active sites. Hence a pharmacophore model 
provides crucial information about how well the common 
features of a subject molecule overlap with the hypothesis 
model. In addition, it also helps in the identification of the 
energetically reasonable conformation, which fits to the 
active site. Such characterized three-dimensional models 
convey important information in an intuitive manner. In 
addition to the standard steric and electronic field used in 
CoMFA, several types of fields have been evidenced in 
advanced CoMFA. These are, the hydrogen bonding fields, 
which are created by assigning energies equal to the steric 
cutoff energy to lattice points that are close to H-bond 
accepting or donating atoms, and the indicator fields, which 
are created by squaring the original field at each lattice point, 
with the retention of the sign of the original field. Also as an 

alternative approach to the computation of molecular 
potential, the comparative molecular similarity indices 
analysis (CoMSIA) has been developed [25]. It is a simple 
and intuitive in concept and avoids the complex statistical 
tools and variable selection procedures favored by other 
methods. The method has similarities to both comparative 
molecular field analysis (CoMFA) and molecular similarity 
studies [26]. Like CoMFA, a grid-based approach is used; 
however, no probe interaction energies need to be calculated. 
Like the similarity methods, it has the intrinsic molecular 
properties, such as the molecular shape and electrostatic 
potential, which are used to develop QSAR models [27]. A 
SOMFA model could be based on any molecular property. In 
the present study, we have used molecular shape and 
electrostatic potentials. A successful 3D-QSAR model does 
not only help in better understanding of the structure–activity 
relationship of any class of compounds, but also provides 
researcher an insight at molecular level about lead 
compounds for further developments. The inherent 
simplicity of this method allows the possibility of aligning 
the training compounds as an integral part of the model 
derivation process and of aligning prediction compounds to 
optimize their predicted activities [28]. Recent studies in our 
laboratory have focused on refining the molecular 
architecture using 3D-QSAR SOMFA approach for 
designing and optimization of new inhibitors for various 
targets [29, 30].  
 Latest technologies of QSAR involve three different 
aspects.  
 (1) Fragment based 2D QSAR (FB 2D-QSAR): In this 
method, a drug candidate is first subjected to fragmentation 
into its components and then bioactivities of drug candidates 
are correlated with physicochemical properties of the 
molecular fragments through two sets of coefficients: one is 
for the physicochemical properties and the other for the 
molecular fragments [31]. FB-QSAR is used to predict the 
model of neuraminidase inhibitors for drug development 
against H5N1 influenza virus [32]. This method is also used 
to predict the new insights for dealing with the drug-resistant 
problem and designing effective adamantane-based anti-flue 
drugs for influenza A viruses [33]. 
 (2) Multiple field 3D QSAR (MF 3D QSAR): It is 
based on comparative molecular field analysis (CoMFA) in 
which two sets of coefficients are involved: one is for the 
potential fields and the other for the Cartesian three 
dimensional grid points [31].  
 (3) Amino Acid-Based Peptide Prediction (AABPP): 
In this method, the biological activities of the peptides and 
proteins are correlated with the physicochemical properties 
of all or partial residues of the sequence through two sets of 
coefficients: one is for the physicochemical properties of 
amino acids and the other for the weight factors of the 
residues [31]. 

 There is a clear cut limitation of QSAR as it can be one-
task or one-target Quantitative Structure–Activity 
Relationships (ot-QSAR) that predict the biological activity 
of drugs against only one parasite species. Consequently, 
multi-tasking learning used to predict drugs activity against 
different species by a single model (mt-QSAR) becomes 
vitally important. The mt-QSARs offer a good opportunity 
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(unpractical with ot-QSAR) to construct drug–drug 
similarity Complex Networks and to map the contribution of 
sub-structures to function for multiple species. Prado et al., 
in 2009 first tried to calculate probabilities of antiparasitic 
action of drugs against different parasites [34]. These mt-
QSARs offer a good opportunity to construct drug-drug 
Complex Networks (CNs) that can be used to explore large 
and complex drug-viral species databases. mt-QSAR models 
are used to predict the antimicrobial activity against different 
fungi [35], bacteria [36] or parasite species [37, 38].  

APPLICATIONS OF QSAR 

 A normal QSAR analysis leads to formation of so many 
equations as it compares and generates a large number of 
dataset for biological systems. Hansch was the first to give 
an equation for drug-receptor interactions, in which he 
considered that electronic, steric, and hydrophobic 
contributions are the major factors which affect the 
interaction. Utilizing a nonlinear relationship between them 
and through pharmaco-kinetics, the drug-receptor interaction 
can be tracked at cellular level. Kubinyi proposed a bilinear 
model and supported the concept of delineation of drug-
receptor interaction. Dihydrofolate reductases (DHFRs) and 
a-chymotrypsin interaction was studied in detail.  

Isolated Receptor Interactions 

 Dihydrofolate reductases (DHFRs) play an important role 
in protein, purine, and pyrimidine synthesis. They have a 
crystallographic structure and are able to form a binary and 
ternary complex. These specialties make the DHFRs as a 
successful target for some heterocyclic ligand like 2, 4-
diamino-1,-3-diazapharmacophore [39].  

Interactions at the Cellular Level 

 QSAR analysis shows all the physico-chemical 
parameters involved in the studies at the cellular level and at 
it also tracks the pharmacokinetics. Cell culture method can 
also be performed to support the QSAR studies. Extensive 
QSAR studies have proved that 3-X-triazines possess toxic 
effect on few mammalian and bacterial cell lines [40, 41]. 
Cytotoxicity levels have been compared between murine 
leukemia cells (L1210/S) and methotrexate-resistant murine 
leukemia cells (L1210/R) and this comparison shows some 
difference among the both. 

In Vivo Interactions 

 QSAR helps to compare a large dataset with in a limited 
time and may also lead to heterogeneity and complexity of 
the data. Only few studies of QSAR have been carried out by 
generating a very small number of datasets [42]. The best 
example is an extensive study between renal and no renal 
clearance rates among few blockers. These blockers are 
eleven in numbers namely bufuralol, tolamolol, propranolol, 
alprenolol, oxprenolol, acebutol, timolol, metoprolol, 
prindolol, atenolol, and nadolol. All of these were compared 
and studied by QSAR [43].  

Three Dimensional Pharmacophore Modeling of Human 
CYP17 Inhibitors 

Using the pharmacophore perception technique, a common-
feature pharmacophore model(s) was generated to explain 
the putative binding requirements for two classes of human 
CYP17 inhibitors (Potential Agents for Prostate Cancer 
Therapy). Common chemical features in the steroid and non-
steroid human CYP17 enzyme inhibitors, as deduced by the 
Catalyst/HipHop program, are one to two hydrogen bond 
acceptors (HBAs) and three hydrophobic groups. For azole-
steroidal ligands, the 3’-OH group of ring A and the N-3 
group of the azole ring attached to ring D at C-17 act as 
hydrogen bond acceptors. A model that permits hydrogen 
bond interaction between the azole functionality on ring D 
and the enzyme is consistent with experimental deductions 
for type II CYP17 inhibitors where a sixth ligating atom 
interacts with Fe(II) of heme. In general, pharmacophore 
models derived for steroid and nonsteroidal compounds bear 
striking similarities to all azole sites mapping the HBA 
functionality and to three hydrophobic features describing 
the hydrophobic interactions between the ligands and the 
enzyme. Using the pharmacophore model derived for azole-
steroidal inhibitors as a 3D search query against several 3D 
multi conformational Catalyst formatted databases, we 
identified several steroidal compounds with potential 
inhibition of this enzyme. Biological testing of some of these 
compounds showed low to high inhibitory potency against 
the human CYP17 enzyme. This shows the potential of our 
pharmacophore model in identifying new and potent CYP17 
inhibitors. Further refinement of the model is in progress 
with a view to identify and optimize new leads [44]. 

Potential Agents for Prostate Cancer Therapy 

 From studies it has been identified in detail, the structural 
elements of naphthoquinone derivatives that are necessary 
for cytotoxic activity in the HL-60 cell line. The independent 
generation of a HypoGen pharmacophore model and a 
QSAR/CoMSIA model, using the alignment obtained with 
the former, has been shown to be a valuable tool for analysis. 
Highly active compounds, such as beta-cycled pyran-1, 2-
naphthoquinones [0.1 íM< IC50 < 0.57 íM], contain four 
pharmacophoric features: three hydrogen-bond-acceptor 
groups and a hydrophobic region. These results provide the 
tools for the design and synthesis of new ligands with high 
predetermined activities. 
 Catalyst/HypoGen pharmacophore modeling approach 
and three-dimensional quantitative structure-activity 
relationship (3D-QSAR)/comparative molecular similarity 
indices analysis (CoMSIA) methods have been successfully 
applied to explain the cytotoxic activity of a set of 51 natural 
and synthesized naphthoquinone derivatives tested in human 
promyelocytic leukemia HL-60 cell line. The computational 
models have facilitated the identification of structural 
elements of the ligands that are essential for antitumoral 
properties. The four most salient features of the highly active 
â-cycled-pyran-1, 2-naphthoquinones [0.1 íM<IC50 <0.6 
íM] are the hydrogen-bond interactions of the carbonyl 
groups at C-1 (HBA1) and C-2 (HBA2), the hydrogen bond 
interaction of the oxygen atom of the pyran ring (HBA3),  
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and the interaction of methyl groups (HYD) at the pyran ring 
with a hydrophobic area at the receptor. The moderately 
active 1, 4-naphthoquinone derivatives accurately fulfill only 
three of these features. The results of our study provide a 
valuable tool in designing new and more potent cytotoxic 
analogs [45]. 

QSAR and Pharmacophore Analysis on Amides Against 
Drug-Resistant  

 A 3D pharmacophore model able to quantitatively predict 
inhibition constants was derived for a series of inhibitors of 
Plasmodium falciparum dihydrofolate reductase (PfDHFR), 
a validated target for anti-malarial therapy. The data set 
included 52 inhibitors, with 23 of these comprising the 
training set and 29 an external test set. The activity range, 
expressed as Ki, of the training set molecules was from 0.3 
to 11 300 nM. The 3D pharmacophore, generated with the 
HypoGen module of Catalyst 4.7, consisted of two hydrogen 
bond donors, one positive ionizable feature, one hydrophobic 
aliphatic feature, and one hydrophobic aromatic feature and 
provided a 3DQSAR model with a correlation coefficient of 
0.954. Importantly, the type and spatial location of the 
chemical features encoded in the pharmacophore were in full 
agreement with the key binding interactions of PfDHFR 
inhibitors as previously established by molecular modeling 
and crystallography of enzyme-inhibitor complexes. The 
model was validated using several techniques, namely, 
Fisher’s randomization test using Cat-Scramble, leave-one-
out test to ensure that the QSAR model is not strictly 
dependent on one particular compound of the training set, 
and activity prediction in an external test set of compounds. 
In addition, the pharmacophore was able to correctly classify 
as active and inactive dihydrofolate reductase and aldose 
reductase inhibitors extracted from the MDDR database, 
respectively. This test was performed in order to challenge 
the predictive ability of the pharmacophore with two classes 
of inhibitors that target very different binding sites. 
Molecular diversity of the data sets was finally estimated by 
means of the Tanimoto approach. The results obtained 
provide confidence for the utility of the pharmacophore in 
the virtual screening of libraries and databases of compounds 
to discover novel PfDHFR inhibitors [46]. 

QSAR Studies for Dynein, Pyrazole and their Derivatives 

 Dea-Ayuela et al. have found new drug targets for the 
two species of Leshmania, Leishmania infantum and 
Leishmania major. Dyneins are important proteins and 
perform major function in the vital activities, such as motion 
of cilia and flagella, nuclear migration, organization of the 
mitotic spindle, and separation of chromosome during 
mitosis. Dea-Ayuela et al. have successfully identified L. 
infantum protein containing dynein heavy chain, and 
illustrated the potential use of the QSAR model as a 
complement to alignment tools [47]. Similarly quantum 
chemical and structure-based technique known as heuristic 
molecular lipophilicity potential (HMLP) method is used for 
alcohol dehydrogenase (LADH) studies of molecular family 
pyrazole and derivatives. The molecular lipophilic index 
LM, molecular hydrophilic index HM, lipophilic indices and 
hydrophilic indices of the substitutes (fragments) and atomic 
lipophilicity indices are constructed and used in QSAR 

study. HMLP indices are correlated with bioactivities of 18 
pyrazole derivatives according to the 2D QSAR procedure 
[48].  
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