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Abstract:

Background:

Horizontal gene transfer of mobile genetic elements is an essential component of prokaryotic evolution. These insertion events in
eukaryotes and particularly in the human genome have been investigated by various methodologies with varying results.

Objective:

In this paper, we implement a sequence composition approach to investigate insertions of genomic islands in the human genome.

Methods:

A modified version of a prokaryotic GI identifier, SeqWord Gene Island Sniffer v.2.0, was used to predict genomic islands in the
hg38 version of the human genome.

Results:

Predicted genomic islands were enriched with long non-coding RNAs and also contributed to the acquisition and modification of
proteins associated with the immune system and gonad development, albeit to a lesser extent. The estimated rate of acquisition of
these genomic islands in vertebrate genomes was non-linear with regards to species divergence times with an acceleration at the time
of vertebrate land invasion and during the transition of prosimians to monkeys soon after the Cretaceous-Paleogene extinction.

Conclusion:

The rapid  acquisition  of  non-conserved  long non-coding  RNAs in  the  human genome and probably  in  vertebrata  genomes  was
facilitated by horizontal gene transfer. All predicted human genomic islands and supporting information are freely accessible from
http://hislands.bi.up.ac.za.
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1. INTRODUCTION

Horizontal Gene Transfer (HGT) is a hallmark of prokaryote evolution and has extensively been studied [1 - 3]. The
vehicles of these events, Mobile Genetic Elements (MGE), transfer functional genes through taxonomic borders, which
promote adaptation of bacteria to new habitats and accelerate evolution [1, 4]. Insertions of foreign DNA, known as
Genomic Islands (GIs),  are  readily identified in prokaryotes by various methods and catalogued in multiple,  easily
accessible platforms for further research and analysis [5 - 7].
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Research  on  eukaryotic  GIs  and  in  particular  human  GIs  are  not  as  comprehensive.  Various  publications  have
delved into the contentious issue of HGT in the human genome with varying degrees of HGT detected [8 - 10]. Even
less is known about the possible role that HGT could play in evolution of eukaryotes. The contribution of HGT to the
diversification of microbial eukaryotes was demonstrated [11], but it remains disputable whether the acquired DNA
fragments can be of any use to higher eukaryotes. One interesting consideration was proposed by Iyer et al. [12] that
cell-to-cell signalling molecules could evolve by a lateral exchange from bacteria to multicellular eukaryotes. In this
case, the authors suggested that these events took place during the early stages of eukaryote speciation, or possibly after
the divergence of chordates from other animal phyla as the boldest hypothesis. There are several publications reporting
gene exchange between higher organisms and their bacterial symbionts, for example between Drosophila ananassae
and  Wolbachia  [13],  or  between  eukaryotic  chromosomes  and  genomes  of  organelles  that  may  be  exemplified  by
multiple inserts of mitochondrial DNA in the nuclear human genome [14]. The latter events are important for tracing
down the paths of human evolution from apes and human migrations, but the functional aspect of these events is rather
controversial.

As less than 2% of human genomic DNA is ultimately translated into proteins [15 - 17], it seems highly optimistic
that  any  functionally  annotated,  large  protein  would  have  arisen  due  to  an  HGT event.  It  is  also  rather  difficult  to
imagine  the  process  of  adaptation  of  acquired  genes  to  the  complex  regulation  of  gene  expression  and  alternative
splicing in vertebrates. However, the lateral transfer of genetic material is not restricted to functional genes and may
include non-coding sequences [18 - 20].

Historically,  long  non-coding  RNAs (lncRNAs)  were  perceived  as  junk  DNA.  Recently  these  genetic  elements
spanning  regions  on  chromosomes  larger  than  200  bp  have  been  reconsidered  and  are  currently  perceived  as
transcriptionally and functionally important [21, 22]. The origin and location of lncRNAs in vertebrate genomes have
been found to be highly influenced and driven by transposable elements due to their ability to incorporate regulatory
sequences  Upon chromosomal  insertions  with  a  substantial  proportion  of  mature  lncRNAs containing  transposable
elements [23].  Recent  studies have indicated a direct  involvement of  lncRNAs in mammalian host  cell  response to
bacterial infections [24 - 26]. LncRNAs are highly variable across genomes with rapid loss or gain occurring during the
course of evolution [27, 28].

The  objective  of  this  study  was  to  determine  whether  the  laterally  acquired  fragments  of  DNA  can  play  any
functional  and/or evolutionary role in vertebrates and particularly in human evolution.  Functional  genetic  elements
which are readily distributed by HGT are genes for regulatory RNA. An attempt was made in this work to investigate
possible association of previously identified lncRNA with predicted GIs. GI prediction was performed by the program
SeqWord Gene Island Sniffer (SWGIS v.2.0) [7, 29 - 31] A modified version of SWGIS v2.0 designed specifically for
GI prediction in eukaryotic genomes has been published recently with a database of predicted eukaryotic GIs [32].
SWGIS uses a sliding window approach to exploit the variance of tetranucleotide frequencies across the genome to
determine GIs  based on their  sequence composition.  The modified version SWGIS v2.0 accounts  also for  a  higher
compositional diversity of eukaryotic chromosomes comprising long stretches of non-coding DNA and frequent repeats
[32].

Only sufficiently large GIs, longer than 5 kbp, can be identified by this method. Readers should be informed that
this  work  was  not  aimed  at  the  creation  of  a  comprehensive  inventory  of  GIs  in  the  human  genome,  but  rather  to
identify sufficiently large horizontally acquired inserts which potentially serve as vehicles for functional genes.

The availability of predicted GIs in the human genome will enable further research in the developing and exciting
field of HGT and GIs in the human evolution. All predicted GIs are freely accessible from http://hislands.bi.up.ac.za.

2. MATERIALS AND METHODS

2.1. Identification of GIs

The latest hg38 version of the human genome was inspected for the presence of GI by the SWGIS v2.0 [32]. This
version  is  a  modification  of  the  original  SWGIS  algorithm,  which  identifies  prokaryotic  GIs  by  means  of
Oligonucleotide Usage Patterns (OUPs) [29 - 31]. SWGIS v2.0 determines a reference OUP for a sliding window of
300 kbp and then calculates OUPs for every 100 kbp step within the 8 kb long sliding windows shifting 2 kbp along the
DNA sequence at every step. False-positive predictions are filtered in SWGIS v2.0 by means of BLASTN [33] against
the SILVA database [34] to exclude GIs containing rRNA genes. These regions contain local OUP deviations similar to
that of GIs yet are believed to be resistant to HGT [6, 35]. It should be noted that the sliding window approach allows
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for  an  estimated  identification  of  GI  containing  loci  and  the  boundaries  of  predicted  GIs  may  contain  flanking
sequences. Analysis of the flanking regions made it possible to estimate possible associations between GI insertions and
a specific genetic context of the human chromosomes, i.e. the presence of tRNA and protein coding sequences in close
proximity to the predicted GIs [5].

As the abundance of repeat elements in the human genome can influence local OUPs and bias GI identification, a
hard-masked version of the human genome hg38 was obtained from the UCSC Genome Browser database [16, 36]. All
repeat elements were removed from each chromosome after which the SWGIS v2.0 algorithm was implemented to
identify GIs in the non-redundant chromosomes. Location of the predicted GIs in the original version of the human
genome  was  determined  by  BLASTN  with  an  e-value  of  1E-200.  Location  preference  for  GIs  was  determined  by
dividing a chromosome into terminal and internal regions and testing the abundance of GIs in either of these locations.
Terminal regions are defined as the first and last ¼ of a chromosome and the internal region as the remaining ½ of a
chromosome.

2.2. tRNA and lncRNA Content of GIs

Predicted tRNA genes for version hg38 of the human genome were acquired from GENCODE Release 26 [37]. All
GIs were inspected for the inclusion of these elements within their boundaries.

Positions  of  lncRNAs  for  the  version  hg38  of  the  human  genome  were  obtained  from  LNCipedia  v.4.1  [38].
Identified GIs were examined for the presence of these elements, which included internal, external and partial overlaps
of a lncRNA with a GI. For partial overlaps, the cut-off was set to at least 200 bp on either side of a GI.

Enrichment  of  these  features  in  GIs  was  tested  with  Fisher’s  exact  test  and  p-value  adjusted  with  Bonferroni
correction. The proportion of these features in GIs were further investigated by comparing the number of features per
base pair for the whole human genome to that of GIs with a 2-sample test for equality of proportions without continuity
correction. All statistical analysis was done in R v3.4.2 [39].

2.3.  Human GIs Displaying Regions of  Pairwise Non-alignment to  38 Other Vertebrates  and Their  lncRNAs
Content

All available precomputed pairwise alignments for the human genome (hg38) against 38 other vertebrate species
were  obtained  in  “liftover”  file  format  from the  UCSC Genome Browser  database.  These  species  included  closely
related  hominids  as  well  as  distantly  related  taxa,  namely:  Bonobo  (PanPan1),  Chimpanzee  (PanTro5),  Gorilla
(GorGor5), Orangutan (PonAbe2), Rhesus (RheMac8), Crab-eating macaque (MacFas5), Green monkey (ChlSab2),
Baboon (PapAnu2), Marmoset (CalJac3), Squirrel monkey (SaiBol1), Tarsier (TarSyr2), Bushbaby (OtoGar3), Mouse
lemur (MicMur2), Malayan flying lemur (GalVar1),  Mouse (Mm10), Naked mole rat (HetGla2), Rat (Rn6), Rabbit
(OryCun2),  Sheep  (OviAri3),  Pig  (SusScr3),  Ferret  (MusFur1),  Dolphin  (TurTru2),  Chinese  pangolin  (ManPen1),
Alpaca  (VicPac2),  Cat  (FelCat8),  Horse  (EquCab2),  Bison  (BisBis1),  Dog  (CanFam3),  Cow  (BosTau8),  Manatee
(TriMan1),  Opossum  (MonDom5),  Wallaby  (MacEug2),  Platypus  (OrnAna2),  Brown  kiwi  (AptMan1),  Chicken
(GalGal5), Golden eagle (AquChr2), Western clawed frog (XenTro7). From the pairwise alignments, DNA insertions in
the human genome showing gaps in alignments larger than 1,000 bp, were identified. All GIs were inspected for the
presence of lncRNAs or protein coding genes within these non-aligned regions.

In an effort to decrease false-positives and random non-alignment, only GIs with lncRNAs overlapping non-aligned
regions  were  included  as  true  HGT events.  Further  filtering  of  predicted  lncRNA containing  GIs  was  based  on  an
assumption that this rare event of evolutionary importance should be absent in all the species prior to the speciation
event. In other words, an insertion should not be detected in any ancestors of the species. Estimated time of species
divergence and the phylogenetic tree of the 38 vertebrate organisms used in this study were obtained from TimeTree
[40].

2.4. Non-aligning Regions in GIs Gene Content and Enrichment Analysis

The complete human gene set in GFF3 file format was obtained from Ensembl [41]. Locations of 21,394 complete
genes in the human genome were extracted and the inclusion of these gene locations in regions of no pairwise alignment
within  GIs  identified.  This  excludes  13  genes,  which  were  found  in  the  mitochondrial  genome.  If  a  region  of  no
alignment  was  found  to  be  larger  than  that  of  a  GI,  all  genes  located  within  the  GI  boundaries  were  used.  Gene
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overrepresentation was tested using PANTER 12.0 [42] with Homo sapiens as reference and Bonferroni correction for
multiple testing.

Complete  genes  within these regions were inspected with  regards  to  non-aligning regions with  other  species  to
indicate the absence of these genes within certain taxa or evolutionary diverged groupings. For each gene all pairwise
alignments to 38 other species were inspected to ascertain the location of a gene in a region of no alignment within or
spanning a GI. This was done to determine the presence of genes within the human genome which are located in regions
not presently detected in other species. Only genes not present in 10 or more pairwise alignments to different organisms
were used. All sequence data, where available, for these genes were extracted from Ensembl in protein format. For
those which were not available from Ensembl the sequence region in the human genome was used in nucleotide format.
Sequences were compared against the NCBI nr database [43].

2.5. Identification of Possible Donors of lncRNA in GIs and Sequence Similarity Analysis

All lncRNAs located within a GI were compared against the NCBI nt database by means of BLASTN with an e-
value cut-off set to 1E-30 in an effort to detect possible donors.

Regions of alignment between lncRNAs located in GIs against the best subject genera were extracted and aligned
with MAFFT [44]. Sequence similarity dendrograms were inferred with IQ-TREE and 1,000 bootstraps specified [45]
with the resulting trees visualized by iTOL [46].

2.6. Fitting a Logistic Function

Distribution of lncRNA inserts with regards to species divergence times was fitted to a mathematical function by
using the Python module curver_fitting.py (https://github.com/aidiary/PRML/blob/master/ch1/curve_fitting.py).

3. RESULTS

3.1. Location and Distribution of GIs

Removal  of  repeat  elements  from  the  chromosomes  reduced  the  size  of  each  chromosome  with  an  average  of
55.96%.  The  highest  reduction  was  observed  in  the  Y  chromosome  with  a  decrease  in  size  of  83.94%,  while
chromosome 2 contained the smallest number of repeat elements with a reduction in size of 49.56%. Size differences
between chromosomes containing repeats and non-redundant chromosomes are displayed in (Fig. 1).

Fig. (1). Barplot of chromosome sizes before and after removal of repeats. The black overlay line represents the number of GIs
identified per chromosome. The mitochondrial genome was excluded from this figure.
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In total 5,725 GIs were predicted across 24 chromosomes relating to an average of 239 GIs per chromosome Table
1. It was found that putatively 4.1% of the original human genome or 9% after removal of repeat elements has been
acquired by HGT. There was a positive correlation between the chromosome size and the number of predicted GIs
compared to the initial lengths of the chromosomes and after repeat removal (Fig. 1). Pearson’s correlation coefficient
was calculated as 0.9074 with a p-value = 9.553E-10. Chromosome 1 contained the highest number of predicted GIs
(542) and chromosome Y had the fewest (62). No GIs were identified in the mitochondrial genome.

Table 1. General statistics regarding GIs identified in human chromosomes.

Chromosome Size before repeat
removal (Mbp)

Size after repeat
removal (Mbp) Number of GIs Combined size of

GIs (Mbp)

Percentage of
chromosome before

repeat removal

Percentage of
chromosome after repeat

removal
1 249.0 111.3 542 12.0 4.8% 10.8%
2 242.2 122.2 443 9.7 4.0% 7.9%
3 198.3 96.4 302 6.6 3.4% 6.9%
4 190.2 91.6 260 5.6 3.0% 6.1%
5 181.5 88.0 299 6.6 3.7% 7.6%
6 170.8 85.0 293 6.5 3.8% 7.6%
7 159.3 77.3 320 7.1 4.4% 9.1%
8 145.1 70.5 250 5.5 3.8% 7.9%
9 138.4 58.8 283 6.2 4.5% 10.6%
10 133.8 66.7 274 6.2 4.6% 9.3%
11 135.1 63.8 281 6.2 4.6% 9.7%
12 133.3 62.6 215 4.8 3.6% 7.6%
13 114.4 49.8 175 3.8 3.3% 7.7%
14 107.0 43.8 191 4.2 3.9% 9.5%
15 102.0 41.2 229 5.1 5.0% 12.4%
16 90.3 39.4 203 4.6 5.0% 11.5%
17 83.3 39.8 238 5.5 6.6% 13.8%
18 80.4 39.3 138 3.0 3.7% 7.5%
19 58.6 23.5 134 2.9 4.9% 12.2%
20 64.4 29.7 154 3.5 5.4% 11.7%
21 46.7 19.4 77 1.8 3.9% 9.4%
22 50.8 18.2 118 2.7 5.2% 14.6%
X 156.0 58.6 244 5.4 3.4% 9.2%
Y 57.2 9.8 62 1.4 2.5% 14.5%

The location of all GIs was furthermore investigated in order to determine if a bias was present with regards to the
chromosomal location of insertion Fig. (2). Frequency of insertions was calculated for the terminal positions, defined as
the  first  and  last  quarters  of  a  chromosome,  and  the  internal  location,  the  remaining  region,  of  the  chromosomes.
Comparison  with  a  Welch  Two Sample  t-test  showed  no  significant  locational  bias  for  these  insertions  (p-value  =
0.4301). In total the terminal positions contained 52.67% of the predicted GIs and with the internal position hosting
47.33%.

3.2. tRNAs in GIs

Identified  GIs  contained  125  tRNAs  out  of  a  possible  648  in  the  human  genome.  GIs  in  chromosome  1  and
chromosome X displayed a high affinity for tRNAs. Chromosome Y contains only 1 tRNA, which is located in a GI
(Supplementary File 1). Proportion testing for the occurrence of tRNAs per base pair in GIs were much greater than the
number of tRNAs per base pair with regards to the remaining portions of the human genome after repeat removal (p-
value = 1.41E-20).
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Fig.  (2).  GIs  distribution  across  human  chromosomes.  The  grey  lines  indicate  GIs  and  the  bold  black  lines  the  division  of  the
chromosome in terminal quartiles and internal regions. The mitochondrial genome was excluded from this figure.

3.3. Genome Specific Insertions in Predicted GIs

Alignment of 38 inspected vertebrate genomes to the human genome revealed unaligned gaps in predicted GIs. It
was found that 5,108 GIs or 89.22% of all predicted GIs contained regions of no alignment located within or spanning
the  GI  boundaries.  Of  these,  2  GIs,  located  on  the  terminal  position  of  the  X  (155,978,495  –  156,028,276)  and  Y
(57,153,461 – 57,214,796) chromosome respectively, contained regions of no alignment to all the 38 other species and
thus represent human specific GIs. The number of GIs containing unaligned regions and the estimated divergence times
are displayed in Table 2.

Table  2.  Identification  of  not  aligned  inserts  in  human  GIs  in  comparison  to  38  other  species  with  different  times  of
speciation.

Specie Accession Number of GIs
with indels

Number of GIs
containing lncRNAs
overlapping indels

Number of lncRNAs
overlapping indels

Number of unique
lncRNA insertion

events after
speciation

Estimated Divergence
Time from H. sapiens

(MYA)

Chimpanzee PanTro5 2 1 1 1 6.65
Bonobo PanPan1 5 1 1 0 6.65
Gorilla GorGor5 5 1 1 0 9.06

Orangutan PonAbe2 7 3 5 4 15.76
Green Monkey ChlSab2 38 10 21 16 29.44

Crab-eating macaque MacFas5 39 10 21 0 29.44
Rhesus RheMac8 46 13 24 3 29.44
Baboon PapAnu2 60 15 26 2 29.44

Marmoset CalJac3 91 37 174 148 43.2
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Specie Accession Number of GIs
with indels

Number of GIs
containing lncRNAs
overlapping indels

Number of lncRNAs
overlapping indels

Number of unique
lncRNA insertion

events after
speciation

Estimated Divergence
Time from H. sapiens

(MYA)

Squirrel monkey SaiBol1 125 59 253 79 43.2
Tarsier TarSyr2 148 72 314 61 67.1

Mouse lemur MicMur2 151 73 326 12 74.0
Bushbaby OtoGar3 157 75 357 31 74.0

Malayan flying lemur GalVar1 158 75 361 4 76.0
Mouse Mm10 163 82 374 13 90.0

Rat Rn6 163 82 374 0 90.0
Naked mole-rat HetGla2 163 82 374 0 90.0

Rabbit OryCun2 164 82 380 6 90.0
Pig SusScr3 165 82 380 0 96.0

Cow BosTau8 166 84 381 1 96.0
Bison BisBis1 182 94 420 39 96.0
Sheep OviAri3 182 94 420 0 96.0

Dolphin TurTru2 185 95 430 10 96.0
Alpaca VicPac2 185 95 434 4 96.0
Horse EquCab2 185 96 438 4 96.0
Dog CanFam3 197 108 514 76 96.0

Ferret MusFur1 197 108 518 4 96.0
Cat FelCat8 199 108 520 2 96.0

Chinese pangolin ManPen1 228 124 638 118 96.0
Manatee TriMan1 232 131 671 33 105.0
Wallaby MacEug2 341 218 1,199 528 159.0
Opossum MonDom5 343 220 1,211 12 159.0
Platypus OrnAna2 678 445 2,387 1,176 177.0
Chicken GalGal5 765 509 2,752 365 312.0

Golden eagle AquChr2 840 567 2,979 227 312.0
Brown kiwi AptMan1 1,108 758 3,975 996 312.0
X. tropicalis XenTro7 2,136 1,497 7,666 3,691 352.0

Zebrafish DanRer10 4,076 3,072 16,024 8,358 435.0

3.4. Analysis of Gene Content of GIs Identified in the Human Genome

In total, 2,506 genes were located within the boundaries of the predicted GIs, but only 290 of them overlapped non-
aligned genome inserts. Furthermore, only 9 complete genes were located inside an insert not found in 10 or more other
species (Supplementary File 3). This indicates that the predicted GIs in the human genomes were located predominantly
close to protein coding sequences but in only a few cases the HGT event contributed to acquisition of new protein
coding genes or possibly individual exons. Among genes overlapping the inserts, the most enriched terms were the
gonadal mesoderm development genes, elongin complex and defensins Table 3. Of the 9 completely inserted genes, 4
were heavy diversity immunoglobulins, which were located on the same GI.

Table 3. PANTHER overrepresentation tests of complete genes located within regions of no pairwise alignment of the human
to 38 other species contained in or spanning GIs.

– Number in Reference
(Homo sapiens)

Number in non-aligned
regions located in GIs Expected Number Fold Enrichment Adjusted p-value

PANTHER Protein Class – – – – –
phosphatase modulatorP 56 6 0.47 12.79 1.85E-03

phosphatase inhibitorC 35 5 0.29 17.05 2.70E-03
cell adhesion molecule 272 12 2.28 5.26 7.89E-04

GO biological process complete – – – – –
gonadal mesoderm development 8 5 0.07 74.58 8.72E-05

defense respone to bacterium 282 12 2.36 5.08 4.89E-02
GO cellular component complete – – – – –

(Table 2) contd.....
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– Number in Reference
(Homo sapiens)

Number in non-aligned
regions located in GIs Expected Number Fold Enrichment Adjusted p-value

elongin complex 8 4 0.07 59.66 1.04E-03
Reactome pathways – – – – –

defensinsP 43 8 0.36 22.20 7.84E-06

beta defensinsC 34 7 0.28 24.57 3.74E-05
P – Parent term, C – Child term

3.5. Analysis of lncRNA Content of GIs

LNCipedia v.4.1 details 144,428 lncRNAs of which 26,466 were found in 4,632 GIs (80.91% of all predicted GIs).
Of  the  24  chromosomes,  6  indicated  significant  overrepresentation  of  lncRNAs  in  GIs  (Supplementary  file  4).
Proportion testing revealed a much higher frequency of lncRNAs per base pair located in GIs when compared to the
amount of lncRNAs per base pair in the remaining portions of the human genome (p-value < 0.001).

Fig. (3). Number of mismatched lncRNAs with regards to other species in predicted GIs plotted along speciation time. A) Average
numbers of  human genome specific  lncRNA calculated for  animals with similar  divergence time (Table 3).  B)  Boxes represent
numbers  of  human  genome  specific  lncRNA  as  revealed  by  comparison  to  genomes  of  different  primates.  Line  represents  the
expected numbers of specific lncRNA estimated by the logistic equation (1).

Of the 4,632 GIs containing lncRNAs, it was found that 4,281 (92.42%) GIs had lncRNAs overlapping region of no
alignment (Table 2). The number of lncRNA insertion events along the divergence time of 38 vertebrate species in
relation to the human genome indicated a non-linear rate of lncRNA accumulation (Fig. 3 and Supplementary File 2).

(Table 3) contd.....
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The biggest number of novel lncRNAs was acquired in vertebrate genomes during the transition from an aquatic to a
terrestrial  lifestyle,  after  which  the  number  of  genomic  regulatory  elements  stabilized  in  reptiles,  birds  and  first
mammalians with the next burst of lncRNA acquisition during the origination of placental mammalians (Fig. 3A).

The  history  of  acquisition  of  lncRNA  elements  during  the  evolution  of  primates  is  shown  in  Figure  3B.
Accumulation of lncRNA was in a non-linear dependence on the time of speciation of the referenced organisms. A
logistic distribution (equation 1) with the parameters K = 76.9 and g = 0.096 showed the best fit with the maxima rate of
HGT  events  taking  place  40-50  million  years  ago  which  corresponds  with  the  time  period  of  rapid  expansion  of
placental animals after the great Cretaceous-Paleogene extinction (Fig. 3A).

(1)

where NlncRNA – expected number of acquired lncRNAs; T – time of the evolutionary split; K and g – logistic equation
constants.

4. DISCUSSION

SWGIS v2.0 was optimized for GI predicting in eukaryotic genomes to alleviate the burden of horizontal transfer
detection in massive genomes such as the human genome [32]. The GIs locational preference was found to be unbiased,
which  is  in  contrast  with  Huang  et  al.  [9]  who  use  an  alternative  approach  of  HGT  prediction  based  on  pairwise
sequence comparison. Furthermore, it was found that GIs clustered on the chromosomes with tRNA genes. Besides
encoding functional tRNA molecules, these genes are important for regulation of transcription of nearby protein coding
genes  and  in  maintenance  of  chromatin  domain  architecture  by  functioning  as  chromatin  barrier  elements  [47].
Moreover,  tRNA genes  are  preferable  sites  for  integration  of  mobile  genetic  elements  in  prokaryotes,  archaea  and
eukaryotes [5, 48, 49]. Thus the neighbouring position of protein and tRNA coding genes in predicted GIs may reflect
both:  insertion  preference  and  better  functional  integration  of  lcnRNA  into  transcriptional  machinery  of  the  host
organism. HGT is common in bacteria with a rather high rate of turnover of GIs by bacterial genomes. Many sequenced
strains of microorganisms were characterized with a unique set of GIs shared only by the closest relatives [7]. HGT is
important  for  fast  adaptation  of  bacteria  to  new  eco-niches  by  sourcing  important  enzymes  from  ecotype-specific
bacterial consortia [50, 51]. However, many bacterial GIs were crammed with selfish plasmid and phage born genes and
probably played no role in the adaptation. Foreign DNA inserts in bacterial genomes are either subjects to excision, if
not functional; or they quickly gain the host specific characteristics in terms of codon usage and preferable usage of
oligonucleotides  in  the  genomic  DNA  amelioration  process  [52].  Contrary,  in  the  higher  metazoan  organisms  a
successful HGT into germline cells is a rare event which occurs maybe once in an epoch, whilst retaining the specific
oligonucleotide usage patterns for even longer periods of time indicates an absence of genome amelioration processes.
At  the  same  time,  80.91%  of  predicted  GIs  were  functional  as  they  contained  lncRNAs  genes.  GI  inserts  also
contributed to the evolution of protein coding genes, but to much lower extent. Only a few small genes related to the
immune  system  functioning  were  acquired  horizontally  in  the  human  genome.  Several  genes  of  defence  against
pathogens and associated with gonadal mesoderm development responsible for sexual dimorphism possibly acquired
their exons through HGT.

Sources of GIs and mechanisms of their acquisition by metazoan organisms remain unclear. Comparison against the
NCBI nr database did not reveal any links to bacterial DNA sequences or proteins implying that bacteria were not the
sources of these elements. High sequence similarities against a few bacterial proteins were identified but these were
determined to be likely due to human contamination in the subject  bacteria.  The most  plausible sources of  GIs are
viruses that corroborates with the latest discoveries in this field [53 - 56]. A total of 244 lncRNAs located in GIs were
found to have sequence similarity (e-value = 1E-30) with viral hosts in the NCBI nt  database. These related to 161
different viral sequences. Human endogenous retrovirus sequences were found to be the most abundant viral hits Fig.
(4). For example, Fig. (5) shows an alignment of a lncRNA ZBTB11-AS1:8 located in a GI on chromosome 3 that was
found  to  have  99.928%  identity  over  the  entire  length  of  the  Human  endogenous  retrovirus  HERV-K(II)  genome
sequence (NCBI accession AB047240.1). Furthermore, this was the second best hit after an alignment to Homo sapiens
3  BAC  RP11-454H13  (Roswell  Park  Cancer  Institute  Human  BAC  Library)  complete  sequence  (NCBI  accession:
AC084198.31). Another lncRNA P3H2-AS1:7 located in a GI on chromosome 3 displayed 91.206% identity over 3,821
bp of Human endogenous retrovirus H HERV-H/env59 (clone 916F3, NCBI accession: AJ289711.1). The only other

         
                ⁄   
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hits found were against Homo sapiens, Pan troglodytes, Pongo abelii, Gorilla gorilla and Nomascus leucogenys (data
not shown).

Fig. (4). Distribution of best BLASTN hits revealed for 244 lncRNA inserts in the human genome against viral sequences in NCBI nt
database.

Fig. (5). Alignment of the lncRNA ZBTB11-AS1:8 found in a GI on human chromosome 3 against the entire length of the Human
endogenous retrovirus HERV-K(II) complete genome sequence (NCBI accession AB047240.1).
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Close relations  between several  lncRNA inserts  and Human endogenous viruses  were  exemplified by sequence
similarity comparison. For instance, a lncRNA insert lnc-AP1S2-2:7 located in a GI on chromosome X displayed high
sequence similarity (90.2% identity) with a 2,550 bp region of Human endogenous retrovirus H HERV-H/env59 (clone
916F3, AJ289711.1). Sequence similarity analysis of this region aligned to other sequences found in Homo sapiens,
Pan troglodytes, Pongo abelii, Gorilla gorilla and Nomascus leucogenys is displayed as a dendrogram in Fig. (6A).
Another  tree  was  designed  for  sequences  sharing  similarity  with  the  lncRNA  MIR3681HG:27  found  in  a  GI  on
chromosome  2.  This  insertion  also  displayed  high  sequence  similarity  (91.2%  identity)  with  a  2,033  bp  region  of
Human endogenous retrovirus H HERV-H/env59 (clone 916F3, AJ289711.1) as shown in (Fig. 6B).

Fig. (6). Dendrograms of sequence similarity revealed between sequences of lncRNA A) lnc-AP1S2-2:7; B) MIR3681HG:27 and
homologous  loci  of  other  chromosomes  and  Human  endogenous  retroviruses  (highlighted  in  the  dendrograms).  Bootstrapping
numbers of sequence clustering are shown.

While  retroviral  genes  and  sequences  are  common  elements  of  repeats  of  the  human  genome,  a  recent  study
reported fossils  of  other prehistorical  non-retroviral  genomes in human chromosomes [53].  The conceptually novel
perception of viruses and their role in the evolution of life was proposed by Moelling [54]. According to this theory,
only a small portion of viruses are strict pathogens causing specific diseases or cancer, while the majority of viruses
exist in the environment as a well-balanced ecosystem and contribute significantly to the evolution of single cell and
multicellular organisms. This hypothesis was supported in a later publication by Durzyńska and Goździcka-Józefiak
[55], where more details on the role of HGT as carried out by environmental viruses in the formation of tree of life were
given. More specifically, the role of genomic inserts of viruses in formation of the antiviral immunity in vertebrates by
HGT was reported by Villarreal [56].

It may be concluded that HGT played an important role in the formation of regulatory networks of vertebrates and
particularly  in  human  evolution.  The  rate  of  acquisition  of  novel  lncRNA  increases  when  organisms  dramatically
change their lifestyle, for example at the time of appearance of first terrestrial vertebrates; or during rapid expansion and
speciation  as  a  part  of  the  founder  effect.  Acquisitions  of  new  lncRNA  are  rare  events  yet  the  GIs  retain  their
compositional specificities throughout epochs and as such may be used for timing and reconstruction of evolutionary
events in eukaryotes.

The most recent possible lncRNA acquisition event with regards to the Chimpanzee genome was located in a GI on
X  chromosome  (55,978,495  –  156,028,276).  This  GI  (GI0530:244,  chrX:  55,978,495  –  156,028,276  in
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hislands.bi.up.ac.za)  contains  13  lncRNAs,  one  of  which  is  WASIR1  (WASH  and  IL9R  antisense  RNA  1,
ENSG00000185203). Gene expression was found to be the highest in human ovary samples with no known orthologues
in the UCSC Genome Browser. Furthermore, it has been reported that a non-coding sequence located and within this GI
on the X chromosome may be involved in the pathogenesis of X-linked calvarial hyperostosis [57]. Unfortunately, the
rather  high  level  of  paralogy  of  lncRNA  genes  in  the  human  genome  prevents  us  from  making  more  specific
conclusions  regarding  the  role  of  every  individual  lncRNA  insert.

CONCLUSION

The  importance  of  lncRNAs in  innate  and  adaptive  immune  responses  in  combination  with  varying  degrees  of
conservation across species may indicate a rapid evolutionary acquisition of these enigmatic regulators by means of
HGT in the human genome.
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