
1875-0362/22 Send Orders for Reprints to reprints@benthamscience.net

1

DOI: 10.2174/18750362-v15-e2208110, 2022, 15, e187503622208110

The Open Bioinformatics Journal
Content list available at: https://openbioinformaticsjournal.com

REVIEW ARTICLE

The  Development  and  Progress  in  Machine  Learning  for  Protein  Subcellular
Localization Prediction

Le He1 and Xiyu Liu2,*

1Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
2Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA

Abstract:

Protein subcellular localization is a novel and promising area and is defined as searching for the specific location of proteins inside the cell, such as
in the nucleus, in the cytoplasm or on the cell membrane. With the rapid development of next-generation sequencing technology, more and more
new protein sequences have been continuously discovered. It is no longer sufficient to merely use traditional wet experimental methods to predict
the subcellular localization of these new proteins. Therefore, it is urgent to develop high-throughput computational methods to achieve quick and
precise  protein  subcellular  localization  predictions.  This  review  summarizes  the  development  of  prediction  methods  for  protein  subcellular
localization over the past decades, expounds on the application of various machine learning methods in this field, and compares the properties and
performance of various well-known predictors. The narrative of this review mainly revolves around three main types of methods, namely, the
sequence-based methods, the knowledge-based methods, and the fusion methods. A special focus is on the gene ontology (GO)-based methods and
the PLoc series methods. Finally, this review looks forward to the future development directions of protein subcellular localization prediction.
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1. INTRODUCTION

The  prediction  of  protein  subcellular  localization  is  an
important research direction in proteomics and molecular cell
biology,  exerting  an  extensive  and  profound  influence  on
protein  function  annotation,  drug  target  discovery,  and  drug
design  [1  -  3].  Using  viral  proteins  as  an  example,  under-
standing the subcellular localization of the SARS-CoV-2 viral
proteins  in  the  host  cells  can  promote  the  development  of
antiviral  drugs,  which  are  important  in  preventing  the
COVID-19 pandemic. Using plant proteins as another example,
a  study  [4]  analyzed  the  subcellular  localizations  of  13
enzymes  and  regulatory  proteins  in  stably  transformed
Arabidopsis thaliana, which provides fundamental insights into
the  relative  functional  contributions  of  each  individual
component  and  a  critical  first  step  for  further  bio-design.
Furthermore,  for  microbial  protein,  Peabody,  M. A.  et  al  [5]
used  a  bacterial  and  archaeal  protein  subcellular  localization
prediction  tool  to  detect  water  quality.  More  importantly,
understanding  the  subcellular  localization  of  human  proteins
has profound clinical significance. For a leading-edge example,
it  can  promote  biomarker  discovery,  a  process  requiring  the
information  of  protein  subcellular  localization  and  translo-
*  Address  correspondence  to  this  author  at  the  Department  of  Translational
Genomics,  Keck  School  of  Medicine,  University  of  Southern  California,  Los
Angeles, CA, USA; E-mail: xiyuliu@usc.edu

cation, and potentially contribute to cancer diagnosis [6]. To be
specific, Xue et al  [7] attempt to screen colon cancer marker
proteins  in  clinical  settings  to  help  with  early  screening,
diagnosis,  and  monitoring  of  metastasis  and  recurrence  of
cancer.  For  other  diseases,  Higa  et  al  [8]  reveal  the  role  of
subcellular localization of Arid5a protein for the regulation of
inflammatory responses to find new targets for the treatment of
immune diseases.

In  this  review,  we  have  explored  and  integrated  a  large
body  of  literature  in  recent  years  in  this  area  and  have
identified  two  major  knowledge  gaps  that  we  are  currently
facing. After that, we present the most representative protein
subcellular localization predictors based on three main types of
methods, namely, the sequence-based methods, the knowledge-
based methods, and the fusion methods. Specifically, we focus
on a GO-based method developed by Wan et al [9 - 16] and a
novel fusion method, i.e., the pLoc series method, developed
by  Chou  et  al  [17  -  35].  Moreover,  we  have  quantitatively
analyzed,  compared  and  visualized  the  performance  data  of
several  representative  predictors.  Finally,  we  give  our  own
perspectives  on  the  future  development  directions  of  protein
subcellular localization prediction.
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1.1. Current Gaps

Currently,  there  are  two  prominent  obstacles  in  protein
subcellular localization prediction. Firstly, the number of novel
and  unreviewed  proteins  grows  rapidly  from  10,867,798
(05/08/2010)  to  195,104,019 (10/07/2020)  Fig.  (14a),  with  a
net  increase  of  184,236,221  in  less  than  ten  years  [36].  In
contrast, the number of reviewed proteins grows from 517,100
(05/08/2010) to 563,552 (10/07/2020) (Fig. 1b), only with a net
increase  of  46,452  in  the  same  period  [36].  The  number  of
unreviewed  proteins  is  40  times  the  number  of  reviewed
proteins.  As  the  number  of  unreviewed  proteins  grows
exponentially,  the current protein prediction methods are not
efficient enough to review these new proteins. Therefore, it is
necessary  and  urgent  to  develop  high-throughput

computational  methods  to  deal  with  these  large-scale
unreviewed proteins. Of all the potential approaches, machine
learning is the most promising one.

Secondly, it is known that proteins exist in some specific
subcellular  locations  (Fig.  2),  and  there  are  already  many
existing predictors for single-label proteins. However, proteins
do not stay at only one site; instead, they can simultaneously
reside at, or move between, two or more subcellular locations
[37  -  40]  (Fig.  3).  Previous  studies  have  demonstrated  that
these proteins at multiple locations play an irreplaceable role in
the  metabolic  system  [41].  Therefore,  many  multi-label
predictors  have been developed to tackle this  problem in the
past decade.

Fig. (1). The growth of protein sequences in the Uniprot Database [36]. Fig. (1a) shows the number of entries in TrEMBL, which are not reviewed
from 1998 to 2020. Fig. (1b) shows the number of entries in Swiss-Prot, which are reviewed from 1990 to 2020.
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Fig. (2). The number of reviewed proteins in each subcellular location. The numbers were provided by Uniprot [36] in October 2020.

Fig. (3). The profile of multi-location proteins existed in two locations. The circus plot represents the human proteins that have two subcellular
locations and is generated based on the data provided in Thul, P. J’s research [42]. The length of different locations on the circumference represents
the total number of proteins in this location. The strings connect two locations of proteins. Meanwhile, it shows the composition of these pairs.

2. SEQUENCE-BASED METHODS

Sequence-based  methods  make  use  of  the  amino  acid
sequence of the query protein to find the correlation between
the sequence and subcellular localization, which can be further

divided  into  three  categories.  The  first  category  is  the
composition-based  methods,  which  focus  on  the  relationship
between  subcellular  localization  and  amino  acid  sequence
information  and  can  be  further  classified  into  3  types:  the
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amino-acid composition (AA) method [43, 44], the amino-acid
pair  composition  (PairAA)  method  [44],  and  the  gapped
amino-acid  pair  composition  (GapAA)  method  [45,  46].  All
these  three  types  of  methods  are  based  on  the  frequency  of
amino acids. To be more specific, PairAA counts the number
of occurrences of AA pairs in a protein, and GapAA counts the
frequencies of AA pairs whose residues are separated by gaps.
The  second  category  is  the  sorting  signal-based  methods,
which can recognize the N-terminal  sorting signals  in  amino
acid  sequences,  including  the  information  where  the  protein
will be transported, to predict protein subcellular localization.
The  third  category  is  the  homology-based  methods.  As
homologous  sequences  are  more  likely  to  reside  in  the  same
subcellular location, the query sequence is searched against a
protein database to determine whether this sequence has known
homologs [47, 48]. If one or more homologs are identified, the
subcellular location of the query sequence will be the same as
for the homolog(s).

2.1. Pseudo-Amino-Acid Composition Features

A lot of recent studies focused on one composition-based
method  named  the  Pseudo-amino-acid  composition  features
(PseAA) method proposed by Chou et al.  [49, 50]. Based on
the  AA-composition  features,  PseAA  can  determine  many
biochemical  properties  of  the  sequence,  such  as
hydrophobicity, hydrophilicity, and side-chain mass of amino
acids from protein sequences by a sequence-order correlation
factor.  Compared  with  AA,  PairAA  and  GapAA,  PseAA
combines the basic normalized AA models and replaces the co-
occurrence frequencies with biochemical properties of amino
acids.  In  addition,  PseAA  integrates  the  sequence-order
information from the biochemical properties of amino acids to
construct  a  dense  feature  vector  in  a  very  low  dimensional
space [41], which is different from PairAA and GapAA, which
formulate a sparse feature vector in a high-dimensional space.
Importantly, PseAA can also be easily modified to incorporate
more biochemical properties, leading to the development of a
number of improved PseAA models [51 - 60]. There are many
classifiers [52 - 60] based on PseAA that have been proposed
for protein subcellular localization.

2.2. Chou’s 5-Step Rule

For the practical design of protein subcellular localization
predictors, Chou originally proposed the “5-Steps Rule” or “5-
Step Rules” in 2011 [61] (hereafter referred to as the 5-steps
rule).  The  5-steps  rule  aims  to  enable  the  development  of  a
practical and reliable statistical predictor based on genomic or
proteomic data. The 5 steps are as follows [61]: 1) Construct or
select a valid benchmark dataset to train and test the predictor,
2)  Formulate  the  sequence  with  an  effective  mathematical
algorithm  that  can  truly  reflect  intrinsic  correlation  with  the
target  to  be  predicted,  3)  Develop  a  powerful  algorithm  (or
engine)  to  predict  the  subcellular  protein  localization,  4)
Perform cross-validation tests to evaluate the accuracy of the
predictor,  and 5) Establish a user-friendly web server for the
predictor that is accessible to the public. Till now, the above 5-
steps  rule  has  been  used  by  many  scientists  in  developing

various predictors for proteomic or genomic analyses. Chou’s
5-step  rule  has  many  merits  [61]:  1)  crystal  clear  in  logic
development,  2)  completely  transparent  in  operation,  3)
reported  result  easy  to  be  repeated  by  other  investigators,  4)
high performance in simulating other sequence-based methods,
and  5)  very  convenient  to  be  used  by  the  majority  of
experimental  scientists.

3. KNOWLEDGE-BASED METHODS

Knowledge-based  methods  are  different  from  sequence-
based  methods  because  they  extract  the  features  of  query
protein  from  knowledge-related  databases,  such  as  the  Gene
Ontology  (GO)  database  [41],  the  Swiss-Prot  keywords
database  [62,  63],  or  the  PubMed  abstracts  database  [64].
These  methods  use  annotations  of  a  protein  to  correlate  the
query  protein  with  the  subcellular  localization.  Among  all
knowledge-based methods, the GO-based method is the most
popular  one,  which  makes  use  of  well-organized  biological
knowledge about genes and gene products.

In  more  detail,  the  GO  database  is  a  set  of  standardized
vocabularies  that  annotate  the  function  of  genes  and  gene
products  across  various  species.  In  the  GO  database,  the
annotations  of  gene  products  are  organized  in  three  related
ontologies:  cellular  components,  biological  processes,  and
molecular  functions.

3.1. The Legitimacy of Using Gene Ontology Information

Four solid theoretical foundations are proposed to support
the legitimacy of gene ontology information utility. Firstly, the
GO-based  method  is  not  a  simple  table-lookup  that  converts
the annotation into another format and GO terms could not be
used to determine the subcellular locations of proteins directly,
as  some  proteins  do  not  have  annotations  regarding  cellular
components  while  others  could  have  multiple  annotations
regarding  cellular  components  in  the  GO  terms.  Thus,  some
proteins  do  not  have  information  regarding  subcellular
localization,  while  others  might  have  multiple  subcellular
localizations.  According  to  Chou  et  al  [65],  proteins  with
annotated subcellular localization information in the Swiss-Prot
database may still be marked as “cellular component unknown”
in the GO database. Secondly, Mei et al [66] did extensive tests
on  the  Multiloc  [67],  BaCelLo  [68],  and  euk-mPLoc  [49]
datasets and showed that not only cellular components but also
molecular functions and biological processes in the GO terms
play  significant  roles  in  estimating  the  kernel  weights  of  the
proposed  classifier  and  contributing  to  the  final  prediction
accuracy of the model, making GO-based methods outperform
sequence-based  methods.  Thirdly,  GO-based  methods
remarkably outperform Briesemeister’s methods [69]; the latter
use  only  homologous  transfer  and  a  basic  local  alignment
search tool (BLAST) which might not be sufficient for reliable
prediction. Fourthly, the legitimacy of using GO information is
also supported by Chou et al [70], who suggested that as long
as  the  input  of  query  proteins  contains  only  sequence
information  without  any  GO  annotations,  the  output  is  the
subcellular  localization  information;  this  method  should  be
regarded as equally legitimate for subcellular localization.
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Fig. (4). The workflow of GOASVM and mGOASVM. The black frame and signal (1) represent the main steps of GOASVM. The green frame and
signal  (2)  represent the main steps of mGOASVM. The signal  means the change of processes from single-location prediction to multi-location
prediction. The protein AC is used to search against the GOA Database to associate the AC of a protein with a set of GO terms. For a protein without
an AC, like novel proteins, its sequence is presented to BLAST to find its homolog from Swiss-Prot, whose ACs are then used to get the GO terms.
Then, the GO vectors will be constructed in the term frequency method, and the GO vectors are classified by SVM. According to the SVM results, the
subcellular location can be predicted. Compared with GOASVM, mGOASVM adopts a multi-label support vector machine (SVM) classifier, and
Score fusion is the fusion of GO scores obtained from ACs of homologs.

3.2. Single-label Predictors

Proteins  that  reside  in  only  one  subcellular  location
represent  most  cellular  proteins.  Therefore,  predicting  the
subcellular localization of single-label proteins is important. A
GO-based  predictor,  GOASVM,  is  one  of  the  most
representative  GO-based  predictors  that  have  laid  a  critical
foundation  for  further  improvement  and  development  of
various  other  protein  subcellular  localization  predictors.

The GOASVM predictor takes only the GO information as
the  input  features  and  adopts  a  successive  search  strategy  to
make sure it can be applied to novel proteins. We illustrated the
strategy by generating a workflow of GOASVM. As shown in
Fig.  (4),  GOASVM  uses  either  accession  numbers  (ACs),
which  is  a  unique  identifier  given  to  a  protein  sequence,  or
amino  acid  (AA)  sequences  as  input  and  extracts  the  GO
information from the GO database. The prediction process is
divided into two stages: feature extraction (vectorization) and
pattern  classification.  For  the  former,  the  query  proteins  are
“vectorized” to high-dimensional GO vectors, and the elements
of  these  vectors  are  determined  [41].  For  the  latter,  the  GO
vectors  are  classified  by  one-vs-rest  linear  support  vector
machines  (SVMs).  If  ACs  are  available,  the  GO  training
vectors will be created based on ACs. However, if only the AA
sequences are known, then ACs of homologs can be used for
training the SVM, and the GO training vectors will be created
by  using  ACs  of  homologs  only.  The  performance  of
GOASVM  can  be  evaluated  by  the  leave-one-out  cross-
validation  (LOOCV).

Compared  with  other  state-of-the-art  GO-based  single-
label  predictors,  such  as  ProLoc-GO  and  Hum-Ploc  [41],

GOASVM performs  best  regardless  of  whether  input  data  is
ACs  or  AA  sequences.  For  instance,  GOASVM  achieves
accuracies of  94.68% and 94.61% in the EU16 dataset  when
AA sequences or ACs are used as inputs, respectively, whereas
other predictors achieve only accuracies of 89.0% and 85.7%
when AA sequences or ACs are used inputs, respectively.

3.3. Multi-Label Predictors

As  mentioned  above,  single-label  protein  subcellular
localization prediction is far from enough to completely predict
the  subcellular  localization  of  all  proteins.  Therefore,  the
development  and  evaluation  of  multi-label  predictors  for
proteins  with  multi-locations  are  essential.  Here,  we  present
seven efficient  multilabel  classifiers  that  are commonly used
for protein subcellular localization prediction, i.e., mGOASVM
[10], AD-SVM [11], mPLR-Loc [12], SS-Loc [16], HybridGO-
Loc  [13],  RP-SVM [14],  and  R3P-Loc  [15].  All  these  seven
predictors  use  GO  information  as  input  features  for  protein
subcellular localization prediction.

3.3.1. Basic Multi-Label Predictors

As  an  improved  version  of  the  original  GOASVM,
mGOASVM was developed for multi-label protein subcellular
localization prediction with three major improvements (Fig. 4).
For  feature  extraction,  mGOASVM  adopts  more  than  one
homologous  protein  from  the  GO  database,  enabling  the
retrieval of relevant GO terms to form a more informative GO
subspace.  Moreover,  mGOASVM  adopts  a  new  multi-label
SVM  classifier  which  can  effectively  deal  with  datasets
containing  both  single-label  and  multi-label  proteins.
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Fig. (5). The improvement of deeper GO information extraction. The improved multi-location predictor exerts the features of GO term frequency and
GO semantic similarity to generate hybrid vectors, and the GO hybridized vector is used as the input of the multi-label classification step.

As the simple binary relevance method is used to deal with
multi-label problems in mGOASVM, a large number of false
positives will exist in its predictions. To tackle this problem, an
adaptive  decision  multi-label  predictor  named  AD-SVM,
which  uses  an  adaptive  decision  scheme  based  on  the
maximum  score  of  one-vs-rest  SVM,  was  developed.  It
effectively reduces the ratio of false positives while exerting
little influence on the prediction accuracy.

Another predictor named mPLR-Loc was also developed
using  the  same  adaptive  decision  scheme  as  AD-SVM,  the
logistic  regression  (LR)  classifier.  One  important  feature  of
mPLR-Loc is  that  the LR posterior scores used in the model
are probabilistic, which may provide better biological meaning
when compared with the AD-SVM method.

3.3.2.  Mining  Deeper  on  GO  for  Protein  Subcellular
Localization

One important improvement of basic multi-label predictors
is  the  extraction  of  deeper  GO  information.  Two  predictors,
namely SS-Loc and HybridGO-Loc, extract semantic similarity
(SS),  a  deeper  GO  information  reflecting  the  relationships
among  the  GO  terms,  for  protein  subcellular  localization
prediction.

In detail, SS-Loc extracts GO information and SS from GO
terms to construct the similarity vectors, which are inputs for
the multi-label SVM classifier. Based on this, HybridGO-Loc
extracts  the  features  of  GO  term  frequency  and  GO  SS  to
generate hybrid vectors. As shown in Fig. (5), the input for the
HybridGO-Loc  is  GO  hybridized  vectors.  The  outstanding
performance  (in  3.3.4)  of  HybridGo-Loc  further  proves  the
hybridization  of  GO  frequency  and  GO  SS  is  a  reasonable
approach.

3.3.3. Ensemble Random Projection for Large-Scale Protein
Subcellular Localization

Another improvement of basic multi-label predictors is the
dimensionality reduction of GO vectors. Generally, thousands
of  GO  terms  formulate  high-dimensional  GO  vectors  during

the GO vector construction, which may contain redundant or
irrelevant information, causing the overfitting of predictors. To
tackle  this  problem,  Wang  et  al  [14,  15]  developed  two
dimensionality reduction methods, namely, RP-SVM and R3P-
Loc, which can apply random projection (RP) to construct an
ensemble of multi-label classifiers.  Ensemble RP can project
GO  vectors  onto  lower-dimensional  space  and  thus  form  a
lower-dimensional  GO  vector,  which  can  subsequently  be
classified by an ensemble of one-vs-rest multi-label classifiers
(Fig. 6). The difference between RP-SVM and R3P-Loc is that
the former utilizes a multi-label SVM classifier and the ProSeq
database,  while  the  latter  uses  a  multi-label  ridge  regression
classifier and a ProSeq-GO database.

ProSeq  and  ProSeq-GO are  two  compact  databases.  The
former  is  a  sequence  database  created  from  the  Swiss-Prot
database, and the latter is a GO-term database created from the
GO  database.  These  compact  databases  could  reduce  the
memory  consumption  by  39  times  while  at  the  same  time
keeping  the  performance  almost  unaffected.

3.3.4. Properties and Performance of Multi-label Predictors

We  integrated  and  summarized  the  properties  of  multi-
label  predictors,  as  shown in  Fig.  (7).  Since the  existence of
null GO vectors will reduce the performance of predictors, all
the predictors discussed in this review adopt a new successive
search  strategy  that  can  avoid  the  null  GO  vectors  and  thus
avoid their negative impact. All the predictors except SS-Loc
use  term  frequencies  for  constructing  feature  vectors,  which
could improve the performance of these predictors. Regarding
classifier  improvement,  AD-SVM  and  HybridGO-loc  use  an
adaptive  decision  scheme  based  on  the  multi-label  SVM
classifier used in mGOASVM, while mPLR-Loc and R3P-Loc
use  multi-label  penalized  logistic  regression  and  ridge
regression  classifiers,  respectively  [41].  To  mine  deeper  GO
information,  HybridGO-Loc  and  SS-Loc  employ  the  GO  SS
for  classification.  In  terms  of  dimensionality  reduction,  RP-
SVM and R3P-Loc adopt random projection ensemble, which
can reduce the high dimensionality of GO vectors and boost the
prediction performance.

Fig. (6). The improvement of the dimensionality reduction of GO vectors. After GO vector construction, the random ensemble projection can project
high-dimension GO vectors onto lower-dimensional spaces and form the lower-dimensional vector; then, the low-dimension vectors are used as the
input of the one-vs-rest multi-label classifiers.
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Fig. (7). The properties of the proposed multi-label predictors. Five important properties are shown in the figure, and the seven proposed predictors
are compared in each property. The red dash means that the predictor has this property.

Based on mGOASVM, the other developed predictors have
made different improvements in aspects, such as deeper feature
extraction, dimensionality reduction, and refinement of multi-
label  classifiers.  We  calculated  the  performance  parameters,
and the results are represented in Fig. (8). The performance of
these predictors is evaluated by seven metrics, i.e.,  accuracy,
precision,  recall,  F1,  HL,  OLA,  and  OAA.  It  is  clear  that

except for recall and OLA, HybridGO-Loc performs the best
among all the predictors, demonstrating that two metrics, GO
and SS, are complementary to each other. Regarding OLA and
recall, SS-Loc has the best performance, which further proves
that  mining  deeper  GO information  (i.e.,  semantic  similarity
information)  is  critical  for  improving  the  predictor
performance.

Fig. (8). Performance of seven multi-label predictors in plant dataset. A. Accuracy: closeness of the predicted subcellular location to the true location.
B. Precision: the degree to which repeated (or reproducible) predicted subcellular locations under unchanged conditions show the same results. C.
Recall: the fraction of the total number of predicted subcellular locations that were actually retrieved. D. F1: the harmonic means of precision and
recall,  which  balances  the  impact  of  these  two  values  to  give  a  more  reasonable  measurement.  E.  HL:  Hamming  loss,  the  better  prediction
performance is represented by the lower value. F. OLA: overall locative accuracy. The location of a protein is considered correctly predicted if any of
the predicted locations match any locations in the true location set. H. OAA: overall actual accuracy. An actual protein is exactly predicted only if all
predicted locations match those in the true location set without any prediction or under prediction. Therefore, OAA is stricter and more objective than
OLA. The values of 1 minus absolute false/HL are displayed for clearer visualization.
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3.3.5. Interpretability of Prediction Result

Another urgent question remaining in protein subcellular
localization prediction is that the prediction results are usually
hard  to  be  interpreted.  However,  these  predictors  should  not
only  provide  the  subcellular  localization  information  of  new
proteins but also clarify the underlying mechanisms why these
proteins are located in specific sites. Wan et al [71 - 74] have
developed  two  classifiers  to  tackle  this  problem,  which  they
named mEN and mLASSO.

Absolute  shrinkage  and  selection  operator  (LASSO)
(Tibshirani, 1996) is an L1-regularized linear regression model.
As shown in Fig. (9), Wan et al have made a LASSO feature
selection from the ProSeq-GO database (a compact database as
mentioned  in  3.3.3),  which  can  be  used  for  the  training  of
normal  GO  vectors  with  irrelevant  features  (or  GO  terms)
removed.  They  used  some  of  the  depth-dependent  GO

hierarchical  information  of  essential  GO  terms,  representing
the relationship between different GO terms, to get a spare GO
hierarchical information-based (HIB) vector. In the final step,
they applied the LASSO classification to the HIB vectors and
got output regarding protein subcellular localizations.

One  crucial  problem for  LASSO is  that  the  results  from
LASSO tend to give very sparse solutions, causing the missing
of some important information from the feature list. Therefore,
a  multi-label  elastic  net  (EN)-based  classifier  is  designed  to
overcome this shortcoming. One convex combination can yield
sparse  representations  in  EN,  which  is  similar  to  those  in
LASSO, and reveal correlated features that can be selected or
deselected together [72]. Actually, LASSO can be regarded as
a special case of EN. In short, compared to LASSO, EN will
select correlated features together, thus causing more essential
GO terms to be selected.

Fig. (9). The workflow of mLASSO. GO vector is used as the input for the LASSO feature selection in ProSeq-GO. Then, the depth-dependent GO
hierarchical information of the selected essential GO terms is used to get a sparse GO HIB vector. Finally, the HIB vectors are input into LASSO
classification to get the subcellular locations.

Fig. (10). The comparison of the performance of two predictors using mEN and mLASSO, respectively, with mGOASVM. The performance metrics
include OAA, OLA, Accuracy, Precision, Recall, F1 and HL. The values of 1 minus Absolute false/HL are displayed for clearer visualization.
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By using mEN and mLASSO, Wan et  al  developed four
multi-label predictors, which are mLASSO-Hum [71], Gram-
LocEN  [72],  Mem-Men  [73],  and  FUEL-mLoc  [74].  The
overall performance of these predictors is comparable to that of
mGOASVM (Fig. 10). However, the key contribution of mEN
and  mLASSO  endow  the  predicting  result  with  biological
significance. Using mLASSO-Hum, 87 out of more than 8000
GO terms are found to play significant roles in determining the
subcellular localization. Using one-vs-rest EN classifiers, 162
and  245  out  of  more  than  8,000  GO  terms  are  selected  for
Gram-positive and Gram-negative bacteria, respectively. These
results are all consistent with biological annotations, indicating
that the key GO terms have higher weights in determining the
corresponding  protein  subcellular  location.  In  addition,  they
also proved that the GO terms derived from cell components,
molecular functions, and biological processes could contribute
to  protein  subcellular  localization  prediction,  implying  these
predictors can provide interpretations for the prediction results.

4. FUSION METHODS

For  the  fusion  methods,  Chou  et  al  combined  GO
information and PseAA into a new predictor series. Recently,
their research about protein subcellular localization prediction
can be generally classified into three series: 1) pLoc-mX [17 -
23],  2)  pLoc_bal-mX [23  -  28],  and  3)  pLoc_deep-Mx [29  -
35],  where  X  denotes  “Euk”  (eukaryotic),  “Hum”  (human),
“Animal”, “Plant”, “Virus”, “Gneg” (Gram-negative bacterial),
“Gpos”  (Gram-positive  bacterial)  proteins,  respectively.
“pLoc”  denotes  “predicted  subcellular  localization”,  “m”
denotes  “multi-label”,  “bal”  denotes  “balancing”  and  “deep”
denotes “deep learning”.

4.1. Methods

Predictors, including pLoc-mHum, pLoc_bal-mHum, and
pLoc_deep-mHum,  for  the  human  protein  database,  are
evaluated.  The  other  datasets  share  very  similar  research
methods. As the original prototype, pLoc-mHum incorporates
the optimal GO information into Chou et al’s general PseAAC
and  inputs  it  into  the  ML0GKR  classifier  to  predict  the
subcellular protein localizations.  The function of the optimal

GO  information  reduces  the  general  PseAAC  vector’s
dimension.

As  a  predictor  improved  from  pLoc-mHum,  pLoc_bal-
mHum tackles the biased consequence of pLoc-mHum, which
is caused by an extremely skewed benchmark dataset, i.e., the
number  of  total  proteins  in  different  organelles  is  very
different.  For  example,  according  to  the  benchmark  dataset
used  in  the  study  by  Xiao  et  al  [22],  pLoc-mHum  predicted
synapse protein number is 22, endosomal protein number is 24.
In contrast,  nuclear protein number is 1021, and cytoplasmic
protein number is 817. To solve this problem, pLoc_bal-mHum
was applied to IHTS (Inserting Hypothetical Training Samples)
to  create  a  Quasi-balancing  training  dataset  that  adds  some
reasonable  samples  into  the  smaller  subsets  to  make  the
skewed  benchmark  dataset  more  balanced.  We  extracted  the
main elements of pLoc_bal-mHum and generated a workflow,
as shown in Fig. (11).

By  combining  the  deep-learning  techniques,  Chou  et  al
developed  pLoc_deep-mHum,  which  is  a  CNN-BiLSTM
neural network model that includes one convolution layer and
one BiLSTM block. The superiority of this model is  that the
CNN convolution  layer  can  extract  the  maximum amount  of
information from human protein features, which will be used as
input  for  BiLSTM.  BiLSTM,  as  a  classifier,  can  filter  the
information through the CNN layer. Finally, the vectors from
CNN  are  transformed  into  probability  to  define  the  class  of
each output.

4.2. Performance and Comparison

To quantitatively evaluate these three series of multi-label
predictors,  Chou  et  al  used  two  sets  of  metrics:  one  for  its
global  accuracy  and  the  other  for  its  local  accuracy.  Global
accuracy  is  defined  by  a  set  of  five  metrics  [69]:  aiming,
coverage, accuracy, absolute true, and absolute false (Fig. 12).
For the absolute_false metric, the smaller the value, the better
the performance; For all other metrics, the higher the value, the
better  the  performance.  Chou  et  al’s  four  intuitive  metrics,
namely,  sensitivity,  specificity,  accuracy,  and  Mathew’s
correlation coefficient, are used to evaluate the local accuracy
of these three multi-label predictors [75, 76] (Fig. 13).

Fig (11). The workflow of pLoc_bal-mHum. The query human proteins first extract key GO information and then combine the key GO with PseAAC
to form the input vectors. After that, IHTS treatments create a Quasi-balancing training dataset by the original skewed benchmark to treat the input
vectors. Finally, by using the ML-GKR classifier, pLoc_bal-mHum can output the subcellular localization result. During the ML-GKR process,
adjusting can find the best performance for pLoc_bal-mHum.
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Fig. (12). The global accuracy performance of Chou’s three series of multi-label predictors in the human dataset. Global accuracy is defined by five
metrics: aiming, coverage, accuracy, absolute true, and absolute false.

Fig.  (13).  The local  accuracy in  different  subcellular  locations  of  Chou’s  three  series  of  multi-label  predictors  in  the  human dataset.  The local
accuracy is defined by four metrics: sensitivity, specificity, accuracy, and Mathew’s correlation coefficient.
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Fig.  (14).  The  overall  performance  comparison  of  all  GO-based  predictors  and  fusion  predictors.  The  performance  metrics  include  accuracy,
aiming/recall, precision/coverage, and absolute false/HL. Among them, aiming and recall, precision and coverage, absolute false and HL have the
same derived equation, just different names. The values of 1 minus Absolute false/HL are displayed for clearer visualization.

It  is  clear  that  the  pLoc_Deep-Hum  performs  the  best
regarding  the  five  metrics  in  global  accuracy  and  a  large
portion of specific organelles, which reflects the superiority of
the pLoc-Deep-X series. For pLoc_balHum, it performs much
better than pLoc-mHum. However, except for some metrics in
specific organelles, such as the sensitivity in the cytoplasm and
the accuracy in the endosome, it falls behind the pLoc_Deep-
Hum  among  global  accuracy  and  most  local  accuracy.  For
pLoc-Hum, it is more like the base of the other two predictors.

Moreover, an interesting finding is that the improvement of
the  algorithm  from  pLoc-Hum  to  pLoc_bal-Hum  or
pLoc_Deep-Hum  can  significantly  improve  the  prediction
performance in certain subcellular locations, such as nucleus,
endosome, and cytoplasm. However, other locations, such as
mitochondrion, have shown better results from pLoc-Hum, so
the  improvement  of  the  algorithm  has  less  impact  on  their
prediction performance.

Lastly, we also calculated and compared the performance
of all these predictors based on the PLoc series with GO-based
methods  (Fig.  14).  For  the  rationality  of  comparison,  we
selected  a  plant  database  that  has  been  tested  by  all  these
predictors  and  selected  four  common  metrics,  which  are
accuracy, recall/aiming, precision/coverage and HL. From the
results,  we  concluded  that  among  all  predictors,  pLoc-deep-
mPlant  performs  best  in  terms  of  accuracy,  precision,  and
absolute  false  rate.  These  results  prove  the  superiority  of

predictors based on deep learning techniques. SS-Loc performs
best  regarding  the  recall,  and  semantic  similarity  has  a
significant  effect  on  this  metric.  As  suggested  from  our
performance analyses, for future directions, one path would be
to fully combine the advantages of the two kinds of methods
(i.e., GO-based methods and PLoc series). Predictors based on
deep  learning  techniques  and  combined  GO features  and  SS
features  like  HybridGO-Loc  can  be  designed  to  further
improve  the  overall  prediction  performance.

CONCLUSION

In this review, we introduce the development and progress
of  machine  learning  in  protein  subcellular  localization
prediction.  We  not  only  include  an  explanation  for  detailed
steps  of  the  predictors  but  also  compare  the  performance
differences between different predictors, which can provide a
quick and powerful reference for scholars interested in protein
subcellular localization prediction and are looking forward to
seeking a breakthrough. Especially, we focus on the multi-label
predictors of GO-based methods and PLoc-mX, PLoc-bal-mX,
Ploc-deep-mX  methods,  which  are  all  state-of-the-art
predictors  belonging  to  the  fusion  method.  The  mGOASVM
method is the base of GO-based methods, many of which are
improved  in  certain  steps  on  the  mGOASVM.  We  can
summarize  that  AD-SVM  and  mPLR-Loc  improve  the
classifier, SS-Loc and HybridGO-Loc improve the deep feature
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extraction, RP-SVM and R3P-Loc improve the dimensionality
reduction, and mLASSO and mEN provide the interpretability
of  prediction  results.  For  the  ploc  series,  the  foundation  is
PLoc-mX;  PLoc-bal-mX equips  a  balancing  training  dataset,
and  ploc-deep-mX  takes  advantage  of  deep  learning
techniques.  In  practical  applications,  we  should  choose
appropriate predictors according to different research purposes
to achieve the optimal prediction effect. For example, using the
localization  of  cancer  marker  proteins  for  early  diagnosis  of
cancer  requires  high  sensitivity,  so  the  improved  classifier
property is particularly important. While for the inflammatory
response regulation, different regulatory factors are induced at
different subcellular locations to mediate different pathways,
resulting in completely opposite regulatory effects. Therefore,
we need more refined location features. In this case, the deep
feature extraction property should be the priority. In a longer-
term  clinical  significance,  accurate  prediction  of  protein
subcellular  localization  can  contribute  to  the  design  of  new
drugs,  which  have  the  potential  for  curing  diseases  and
benefiting  all  humankind.
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