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Abstract:
Background: To detect cyberattacks and assess risks in cyber-physical systems used in pharmaceutical treatment,
this study presents a two-tiered approach that combines machine learning and Internet of Things (IoT) security. By
prioritizing  risk-based  responses  and  facilitating  real-time  threat  mitigation,  it  improves  system  resilience.Drug
delivery, patient data management, and healthcare efficiency have all been greatly improved by the incorporation of
cyber-physical  systems  (CPS)  into  pharmaceutical  care  services.  However,  because  digital  and  physical
infrastructures are now interconnected, this development has created serious cybersecurity risks. Strong detection
and mitigation procedures are necessary because cyberattacks have the potential to compromise patient safety, data
integrity, and service reliability. The necessity for a specific cybersecurity architecture for pharmaceutical CPS is
highlighted by the fact that current security solutions frequently fall short in addressing real-time threat detection
and risk assessment.

Methods: To detect and eliminate cyber threats instantly, the suggested method makes use of sophisticated machine
learning models, intrusion detection systems, and Internet of Things security strategies. A risk-estimation system that
assesses attacks according to impact,  detectability,  and risk estimation factor (REF) is  included in a two-layered
strategy. To evaluate the performance of the proposed method in comparison with existing security frameworks,
simulations  were  conducted.  Analysis  is  performed  on  important  variables  such  as  system  resilience,  risk
quantification,  and  detection  accuracy.

Results: The results of the simulation show that the suggested method improves the accuracy of threat identification
and offers a methodical framework for risk evaluation. The strategy demonstrates increased accuracy in detecting
cyberattacks and prioritizing mitigation measures when compared to current approaches. By accurately estimating
the intensity of an assault, the risk estimation approach guarantees preventative security measures.

Conclusion: A unique cybersecurity  architecture for  intelligent  CPS in  pharmaceutical  care is  presented in  this
paper. The method improves system resilience, protects patient data, and guarantees the dependable functioning of
pharmaceutical  services  against  changing  cyber  threats  by  combining  real-time  threat  detection  with  risk
assessment.
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1. INTRODUCTION
Intelligent  healthcare  technologies  make  major

contributions  to  daily  life  by  providing  electronic
healthcare  services  and  have  the  potential  to  improve
patient  care  quality.  Technology  is  used  in  a  variety  of
applications,  including  smart  homes  [1,  2],  intelligent
businesses [3], intelligent neighborhoods [4], mobility [5],
intelligent healthcare [6], and satellites. Due to their tiny
size  and  heterogeneity,  smart  devices  and  apps  have
grown fast in recent years, making them very vulnerable
to cyberattacks. The integration of advanced technologies
has transformed wearable and healthcare devices, leading
to the development of intelligent medical systems [7]. Due
to  the  gadgets  and  wearables,  remote  monitoring  in
healthcare  is  now  feasible,  keeping  patients  safe  and
motivating  clinicians  to  provide  the  best  treatment
possible  [8].  Patient  participation  and  comfort  have
increased,  and  medical  interactions  have  become  more
efficient [9]. Unfortunately, the connectivity of this large
number  of  IoMT  devices  has  drawn  attackers  into  the
healthcare  system.  The  latest  cyberattacks  highlighted
fundamental flaws in the IoMT ecosystem [10]. Inadequate
architecture and security methods can allow attackers to
intercept  such  networks.  Unauthorized  access  poses  a
security risk due to a lack of detection and prevention. An
attacker  can  modify  medicine  doses  remotely  and  use
IoMT  sensors  as  botnets  for  DDoS  assaults  [11].
Healthcare  organizations  have  experienced  hacking  and
unauthorized access, such as the 2018 Ransomware cyber-
attack that cost Indiana hospitals $55,000 [12].  A cyber-
attack aims to ruin and interfere with computer network
operation [13]. The numerous cyber-attack categories are
denial-of-service  (DoS),  logical  bombs,  spam,  sniffers,
viruses,  worms,  Trojan  horses,  and  botnets.  The  DoS
attack keeps the system from communicating with other
computers or surfing the internet. Attacks might start fast
from one or many scattered sources. Protecting networks
and  data  from  several  kinds  of  assaults  depends  on
cybersecurity.  It  is  thus  important  to  have  a  plan  for
spotting  different  types  of  attacks  in  IoHT.  Apart  from
safety  concerns,  medical  professionals  do  not  openly
access databases on cyber-attacks as sensitive material is
at  risk  and  can  harm  and  kill  people  [14].  CPS  is  an
engineering  and  physical  system  that  relies  on
communication,  computation,  and  control  to  coordinate
and  monitor  processes.  This  CPS  has  been  used  in
significant  industries,  including  biomedical,  smart  grids,
and  ITS  (intelligent  transportation  systems).  The
Healthcare  Cyber-Physical  System  (H-CPS)  generates  a
smart  healthcare environment all  around.  From sensors,
the  H-CPS  combines  e-health  data,  IoMT  (artificial
intelligence), and EHR. To build smart healthcare, H-CPS
integrates  biosensors,  implanted  medical  devices  (IMD),
conventional  healthcare,  ICT,  wearable  devices,
communication  mechanisms,  and  artificial  intelligence
[15-17].  We  use  a  special  technique  to  identify  several
cyberattacks to reduce the described risks. Cyber-Physical
Systems (CPS) automate and regulate industrial processes
by  combining  cyber  elements  for  processing  and

communication with physical components for sensing and
actuation.  Important  sectors  include  healthcare,  traffic
management,  industry,  and  energy  infrastructure,  all  of
which are extensively used. These systems use commercial
and  open-source  software  as  well  as  common
communication  protocols  to  enable  interaction  with
corporate  networks  and  save  infrastructure  expenses.
These  technologies  have,  however,  been  susceptible  to
fresh  security  concerns  and  cyberattacks,  therefore
upsetting  normal  business  operations.  Recent  advanced
attacks  on  systems  draw  attention  to  the  necessity  of
methods  and  instruments  to  control  cybersecurity
vulnerabilities [18]. Early in the course of system design,
safety and security needs should be noted and taken care
of  [19].  IT  security  risk  assessment  follows  recognized
international  standards,  such  as  those  mentioned  in  a
study [20]. This paradigm presents new hazards compared
to  traditional  computer  networks.  Data  loss  can  have  a
wide range of consequences, including service disruption
and loss of life. To improve efficiency in e-health systems,
risk  assessment  approaches  should  be  updated
accordingly. Trustworthiness and patient confidence in e-
healthcare security and data protection are crucial for its
widespread  adoption.  To  promote  the  expansion  of
electronic linked devices in the healthcare industry, firms
must  balance  low  transaction  costs  with  effective  and
efficient data transfers and acceptable hazards. Effective
security mechanisms need increased processing expenses.
E-health system builders support risk as an indirect cost
[21].  In  this  study,  we  are  providing  a  cyber-risk
estimation  technique.

2. MOTIVATION
Among  other  uses,  CPSs  were  extensively  used  in

sectors  like  distribution  networks,  manufacturing,
construction,  pharmaceutical,  and  transportation.
Advancements in IMoT technology are resulting from the
growing  number  of  connected  wearable  devices  and
communication  via  PCS  as  it  is  emerging.  Adoption  of
edge-based CPSs underlines dependability and credibility.
We are aware that dependability and trustworthiness are
multifaceted  aspects  intimately  related  to  CPS,  human
perception, and trust security. Researchers are developing
AI-based  approaches  to  solve  future  CPS  difficulties.
Researchers  have  created  many  healthcare  monitoring
models; however, limits remain for cloud-enabled systems,
making them unsuitable for real-world applications. Cloud
computing  and  healthcare  organizations  face
communication overhead, latency, and privacy challenges
when  aggregating  sensitive  data.  As  the  number  of  IoT-
based  healthcare  networks  grows,  hostile  assaults  have
become  more  sophisticated.  Privacy  concerns  for  IoT
nodes,  smartphones,  and  computer  systems  on  the
internet.  Companies,  especially  pharmaceuticals,  are
increasingly  relying  on  technology  for  their  operations.
Businesses  have  successfully  adapted  to  remote  work,
with TCS projecting that by 2025, 75% of their personnel
will  be  working  from  home.  As  firms  adjust  to  this  new
work style, mitigating related risks becomes increasingly
important. Effective risk management is essential for
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Table 1. Cyber attacks identified.

Cyber Attack Types Different Attacks Cyber Risk Types

Social engineering attacks

Baiting
Pretexting Tailgating

Business Email Compromise Whaling
Vishing

Watering Hole

Data loss
Credential theft

Malware and ransomware Financial loss
Reputation damage

Legal and regulatory
consequences

Damaged client relationships Legal liabilities
Reputation damage

Application attacks,
Cryptography attacks

Control Hijacking attacks

Buffer Overflow Attack
Integer Overflow Attack

Format String Vulnerabilities
Reconnaissance attacks

Computer network attacks

DoS Attacks
DDoS Attack

Bots and botnets
Malware attacks

Phishing attacks
Password attacks

Man-in-the-middle attack
Spoofing

Identity-Based Attacks
Code Injection Attacks
Supply Chain Attacks

digital and technological transformation. Digital risk refers
to  the  risks  that  arise  when  a  firm  transitions  to  digital
platforms.  Identifying  and  mitigating  possible  risks  is
crucial  for  all  industries.  Businesses  might  experience
data loss and theft of crucial information. Privacy breaches
occur  as  a  result  of  digital  advancements  in  business.
Businesses  may  encounter  risks  associated  with
automation  and  compliance.  This  research  analyses  the
viewpoints and experiences of subject matter specialists in
the pharmaceutical sector, coding the data to draw precise
findings. In the detailed study, it was found that there are
different types of attacks. Our primary accomplishments of
this study effort are as follows:

•  We  developed  algorithms  that  can  detect
cyberattacks  in  pharmaceutical  care  services.

•  Introduced  a  novel  risk  estimation  factor  (REF)  to
quantify attack severity based on impact and detectability.

• Included anomaly detection and IoT security methods
to  improve  the  security  and  dependability  of
pharmaceutical  care  services.

• The proposed algorithms are performing better than
the existing ones.

The remaining work is  organized as  follows:  starting
with  the  literature  review  followed  by  the  proposed
scheme.  The  next  segment  contains  a  discussion  of  the
experiment. Finally, the conclusion summarizes the work
and outlines potential directions for future research.

3. DIFFERENT TYPES OF CYBER ATTACKS
Table  1  lists  all  the  identified  attacks  and  highlights

the various types of risks that could occur if any of these
attacks  were  executed  on  the  system.  This  section

contains details about each attack and also describes the
different techniques required to detect these attacks.

• Social engineering attacks: When it comes to cyber
security,  many  people  feel  that  they  should  defend
themselves against hackers that use technological flaws to
assault data networks. However, there is another method
for infiltrating organizations and networks that makes use
of people’s vulnerabilities. “Social engineering” refers to
the  process  of  deceiving  someone  into  disclosing
information or getting access to data networks. In short,
social  engineering  is  the  manipulation  of  individuals  so
that they can access or expose information or data. Social
engineering, like other cyber-attacks, seeks to circumvent
an  individual’s  or  organization’s  security  measures.
Anyone  can  fall  prey  to  a  social  engineering  attack.
However,  elderly  individuals  with  inadequate  technical
skills,  individuals very minimal human connection, along
with those susceptible to impetuous behavior are frequent
targets.  One’s  own/exclusive  information  should  not  be
disclosed to avoid potential attacks; anyone attempting to
communicate  should  be  investigated;  URL/address
verification must be undertaken; unreliable sources ought
to  be  ignored.  Social  engineering  assaults  use  human
psychology  to  deceive  people  into  disclosing  critical
information. Here are some examples of social engineering
assaults and the algorithms they use:

◦ Baiting: This assault, like phishing, takes advantage
of  a  target’s  greed,  temptation,  or  fear  by  providing
something appealing in exchange for personal information.

◦ Pretexting: This assault employs appealing stories to
persuade victims that they are genuine and then exploits
their beliefs to obtain personal information.
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◦ Tailgating is an exploit that allows hackers to enter
restricted  regions  without  appropriate  authentication.
Corporate Email Compromise (BEC) is an attack in which
an individual obtains access to a corporate email account
and uses it to send fraudulent emails.

◦ Whaling: Senior executives are the target of this kind
of  phishing assault,  which poses as a genuine email  and
tempts  them  to  perform  a  secondary  action,  such  as
initiating  a  wire  transfer.

◦ Vishing: This type of targeted assault sends recorded
messages  over  the  phone,  such  as  alerting  victims  that
their bank accounts have been hacked. The attacker then
gains access to the victims’ accounts when they are asked
to enter their information on the keypad of their phone.

◦  Attacks  known as  “watering  holes”  entail  infecting
unprotected websites and online sources that the targeted
individuals  often  access.  The  objective  may  obtain
exposure  to  the  target’s  infrastructure  or  infect  devices
with malware.

•  Application  attacks:  Cybercriminals  can  access
unauthorized  sites  using  an  application  attack.  Often,
attackers start scanning the application layer for flaws in
code-based  services.  Numerous  apps  representing
different  programming  languages  are  attacked,  even  if
certain  programming  languages  are  targeted  more
frequently  than  others.  There  are  flaws  in  commercial
software  and  free  frameworks  and  libraries.
Cybercriminals can take advantage of application flaws to
attack programs in production. These attacks target open-
source  frameworks  and  libraries  as  well  as  proprietary
programs. Cybercriminals exploit a variety of techniques,
including flaws in programming, vulnerabilities brought on
by outdated certificates, and vulnerabilities brought on by
inadequate authentication.

• Cryptography attacks: The technique of storing and
sending  data  in  a  certain  manner  such  that  only  the
intended receivers can access and comprehend is known
as  cryptography.  The  processes  of  encryption,  which
transforms  plain  text  into  cipher  text,  and  decryption,
which transforms cipher text back into plain text, are used
to accomplish this. A cryptographic attack occurs when an
attacker  looks  for  weaknesses  in  the  code,  cipher,
encryption  protocol,  or  key  handling  system  to
compromise an encryption system.  Such assaults  can be
split  into  two  distinct  categories:  passive  or  aggressive.
While active attacks change or start an unauthorized flow
of  information,  passive  attacks  permit  the  illegal
disclosure  of  data  with  no  compromising  with  the
exchange  of  information  channels.  While  active  assaults
entail altering data without authorization, passive attacks
are  frequently  linked  to  information  theft.  The
confidentiality  and  integrity  of  sensitive  data  may  be
jeopardized  by  any  kind  of  assault.

• Hijacking attacks: Hijacking assaults are a subset of
security-related attacks wherein an assailant gains control
of computer systems, software applications, and network
communications. The majority of cyber attacks depend on
some  sort  of  hijacking,  and  hacking  is  routinely—if  not

always—illegal, with grave repercussions for the victim as
well  as  the  attacker.  Among  these  incidents  are  those
involving  aircraft  hijackers  or  the  commandeering  of  an
armored  transport  truck.  There  are  several  varieties  of
hijack  assaults;  these  are  enumerated  here:  Session,
Domain Name System (DNS), browser, clipboard, Internet
Protocol (IP) and page hijacking.

• Computer Network Attacks (CNAs): These involve
gaining unauthorized control over a computer or network
to  manipulate,  delete,  reject,  or  distort  data  within  the
system.  CNAs  can  be  used  to  shut  down  systems,  alter
data, exploit resources for botnets, or perform any activity
that  compromises  the  availability,  confidentiality,  or
integrity of the targeted system. A CNA executes attacks
by  manipulating  data  streams.  For  example,  it  might
transmit  malicious  code  or  commands  to  the  central
processing  unit  (CPU),  potentially  causing  hardware
malfunctions or forcing system shutdowns. Attackers join
the network and scout it before acting to execute a CNA.
Discovery  helps  one  to  learn  the  network  configuration
and  choose  the  best  approach  to  engage  in  negative
behavior.

• Phishing attacks: Computer Network Attacks (CNAs)
involve gaining unauthorized control over a computer or
network  by  modifying,  deleting,  rejecting,  or  distorting
data  within  the  system.  These  attacks  can  shut  down
systems, alter or erase data, exploit system resources for
botnets,  and perform other  actions  that  compromise  the
availability,  integrity,  or  functionality  of  the  targeted
system.The  CNA  runs  the  attack  using  the  data  stream.
For  example,  a  CNA  might  send  a  code  or  order  to  a
central  processing  unit  forcing  system  shutdowns.
Attackers  join  the  network  and  scout  it  before  acting  to
execute a CNA. Discovery enables an attacker to identify
the  network  configuration  and  determine  the  most
effective  method  to  carry  out  malicious  activities.

•  Paying  attention  and  learning  will  help  prevent
phishing attacks. Although email monitoring systems can
block  many  regular  phishing  attempts,  employee  email
security  training  can  help  reduce  the  number  of
prospective  victims  by  raising  an  understanding  of
phishing  risk.  Simultaneously,  one  should  be  careful  of
website pop-ups and ensure the URL starts with “HTTPS”
and features a closed lock icon next to the address bar to
stop phishing efforts.

•  Malware  attacks:  Malware,  short  for  malicious
software,  is  designed  to  compromise  computer  systems,
steal  data,  or  disrupt  users  through  various  harmful
activities.  Among  the  several  instances  of  this  kind  of
program are Trojan horses, worms, viruses, and rootkits.
Though their main classification is as software, they can
resemble  simple  codes.  Often  referred  to  as  scumware,
malware may be distributed in almost any programming or
scripting  language  and  written  in  several  file  formats.
Malware  might  keep  gathering  data  and  spy  for  a
significant  length of  time without informing the affected
computer system. Moreover, it can be used for extortion of
money or payments or  for  damage or disturbance of  the
system it targets (such as Stuxnet).
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• Bots and botnets: Standing for “robot,” a “bot” is a
piece  of  software  designed  to  do  specified,  automated,
repeating operations.  Bots  regularly  copy or  replace the
acts  of  human  users.  Being  automated,  they  run
significantly faster than human users. They may be used
practically for customer service or search engine indexing,
or they can be used as malware to seize complete control
of a machine. To spread spam, scan contact lists, breach
user accounts, and complete other evil activities, one can
design or hack malware bots and Internet bots. The term
“botnet”  combines  the  words  “robot”  and  “network.”  A
botnet  is  an  assembly  of  Internet-connected  computers
interacting with other such devices to achieve goals and
repetitive  activities.  Spam  emails  are  sent  using  these
networks  rather  often.  Under  attacker  control,  a  botnet
can  be  as  vast  as  hundreds  of  thousands  of  zombie
computers  or  even  thousands.  Every  software  agent
program  also  is  run  remotely.

• Password attacks: One of the most common forms of
cyberattacks  is  the  password assault.  Both personal  and
business targets are susceptible to password assaults. By
stealing  the  passwords  to  any  area  that  needs  one,
including social media networks, technology, or software
that the person or organization uses, the goal is to cause
harm to  the  organization or  individuals.  Easy  passwords
are  typically  preferred  by  people  or  organizations  to
prevent  forgetting them. Specifically,  social  media users
can provide a summary of the password text they use on
their  profiles.  For  instance,  a  person’s  social  media
profiles provide a wealth of information, like their date of
birth, place of residence, spouse or partner’s name, years
of  relationship,  and the team they support.  For  hackers,
this  knowledge  is  crucial.  As  a  result,  disclosing  this
information  makes  it  easier  for  hackers  to  execute
password  assaults.

•  Man-in-the-middle  attack:  A  “man-in-the-middle”
attack  is  the  first  type  of  cybercrime  in  which  a  hostile
person  discreetly  meddles  with  two  parties’
communication.  This  hack  provides  access  to  and  even
modification capability for the victim’s supplied data. The
attacker  succeeds  by  creating  a  clandestine,  phony  link
between their devices and the victims. Usually aiming to
either  mimic  one  of  the  parties  or  get  passwords,  bank
information,  and  personal  data,  a  man-in-the-middle
assault is These deeds, regretfully, might include changing
login  passwords  or  beginning  a  money  transfer.  The
optimum  locations  for  an  attack  to  take  place  are  those
with  free  Wi-Fi.  The  content  of  unencrypted  packets  is
easily  accessible.  Attackers  use  Wi-Fi  sites  to  control
network traffic so it flows across them. Consequently, the
assailant turns into the traffic conduit for the users of the
network. The assailant who intercepts this message may
find passwords or personal information.

• DDoS (Distributed DoS): A kind of DoS attack aimed
at one system by use of several hacked systems.

• Denial of Service (DoS): An attack that overwhelms a
system  or  network  with  traffic  or  requests  to  make  it
unavailable  to  its  users

•  Reconnaissance  attacks:  These  include  techniques
such as packet sniffing, ping sweeps, port scanning, and
internet  information  queries,  which  are  used  to  gather
information about a target system or network.

4. CYBER-ATTACK DETECTION TECHNIQUE
• Technique 1: Proof of Source Authenticity (PoSATM)

from  Memcyco:  It  employs  AI  to  identify  anomalous
activity and provides organizations with complete assault
information for transparency. Memcyco enhances security
by immediately alerting users when they visit a fraudulent
website. It provides a comprehensive analysis of the attack
and  uses  a  unique,  editable  watermark  to  authenticate
web pages. As an agentless solution, Memcyco requires no
registration or installation from your clients.

• Technique 2: Anomaly Detection: Based on a known
pattern  in  a  system,  organizations  can  use  tools  and
procedures to detect anomalous conduct. In this scenario,
anomalies are defined as any user or system events that
depart  from  a  baseline  pattern.  Techniques  for  anomaly
detection  can  be  used  by  businesses  to  find  important
incidents.

• Technique 3: Signature-based Detection in Intrusion
Detection  Systems  (IDS):  Signature-based  detection  is  a
fundamental  detection  method.  By  recognizing  danger
indicators,  the  approach  enables  intrusion  detection
systems  (IDS)  to  identify  malicious  activity  or
unauthorized network access. An expert system in cervical
dysplasia  is  a  specialized  computer-based  application
designed  to  assist  healthcare  professionals,  such  as
gynecologists  and  pathologists,  in  the  diagnosis  and
management  of  cervical  dysplasia,  a  precancerous
condition of  the cervix  [15-17].  This  technique combines
clinical  know-how  and  artificial  intelligence  to  offer
accurate  assessments,  recommendations,  and  aid  for
healthcare practitioners in their choice-making methods.

• Technique 4: Heuristic Analysis Examining code for
questionable  elements—a technique  known as  “heuristic
analysis”—may also be necessary for threat detection. By
enabling  security  experts  to  decompile  questionable
applications and compare them with known malware code
stored  in  a  heuristic  database,  the  approach  aids  in
malware  identification.  If  a  certain  proportion  of  the
program’s  source  code  matches  a  virus  in  the  database,
the software is marked as potentially dangerous.

• Technique 5: Sandboxing is the process of executing
and examining code in a secure, segregated section of a
network.  It  is  best  practice  to  employ  a  sandbox  that
replicates  the  real  end-user  operating  environment  for
better  outcomes.

•  Technique  6:  Honey  Pots  and  Honey  Nets  A
fascinating  security  method  called  a  “honeypot”  uses
virtual  or  intruder  traps  to  entice  hackers.  Security
experts create a purposefully weak system that makes it
easy for attackers to take advantage of vulnerabilities. To
strengthen  their  cybersecurity  posture  in  the  meantime,
the security team might research the strategies, methods,
and practices used by the threat actors.
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•  Technique  7:  Endpoint  Detection  and  Response
(EDR)  is  an  essential  tool  in  today’s  dynamic  threat
landscape. The adage “time is money” holds particularly
true, as the faster you can detect, respond to, and recover
from security threats, the more effectively you can protect
your  system.  EDR  combines  automated  detection  and
response,  offering  a  streamlined  approach  to  managing
risks.

•  Technique  8:  Artificial  Intelligence  and  Machine
Learning  Prior  to  AI  and  machine  learning,  IT  systems
could only detect  known and tested dangers like viruses
and  malware  using  rule  and  signature-based  threat
detection  methods.  Unfortunately,  the  ability  of  these
conventional  security  methods  to  identify  complex  and
changing assaults  is  limited.  Missed security  events  and
delayed discovery were encountered by security analysts.
EDR is an integrated security method that combines rule-
based  analysis  and  response  capabilities  with  real-time
endpoint event monitoring and recording.

5. LITERATURE REVIEW
Cyberspace  has  evolved  into  a  breeding  ground  for

new  types  of  entrepreneurship,  technical  developments,
the  spread  of  free  expression,  and  new  social  networks
that  power  our  economy  and  reflect  our  values.  Critical
infrastructure  is  required  to  ensure  the  nation’s  and  its
economy’s safety,  health, and well-being. The efficacy of
cyberspace  is  essential  to  our  national  security  and
economy.  Cyberspace,  which  allows  all  information
infrastructures to be available over the Internet outside all
geographical  boundaries,  poses  a  tremendous  danger  to
our  national  security,  economic  prosperity,  and  public
safety  and  health.  Cyberspace  has  become  the  most
hazardous area in the world, the number one threat to our
Homeland,  and  defending  against  cyberattacks  is
exceedingly  tough.  Salahuddin  et  al.  [21]  designed edge
gateway  hardware  to  build  a  smart  healthcare  system
combining  publicly  accessible  networks  and  wireless
networks of sensors (WSN). Smart gates alert doctors to
crises and offer data-driven decision-making. Janjua et al.
[22]  assessed  the  insider  threat  detection  capability  of
many  machine-learning  techniques.  The  proposed  spam

detection algorithm was developed by the authors from a
dataset  of  24  users’  activity  traces  spanning  five  days.
With  98.3%  accuracy,  Adaboost  excelled  among  other
methods.  In  a  study  [23],  the  authors  introduced
affordable block chain task scheduling (CBTS) with many
techniques for cyber- physical systems to control security
costs  and  deadlines.  Data  validation  in  cyber  security
drops by 33%; security execution drops by 50%. Fisayo et
al. [24] proposed a framework for protecting data against
privacy  concerns.  The  authors  achieved  higher  data
usefulness  compared  to  other  classic  anonymization
strategies.  Manimurugan  et  al.  [25]  utilized  the  CICIDS
2017 dataset to detect various types of attacks—primarily
botnet,  brute  force,  DoS,  intrusion,  and  port
attacks—using deep belief neural network models. Syed et
al. [26] noted that Intensive Care Units (ICUs) commonly
contain a range of medical devices, such as ECG monitors,
glucose  meters,  syringe  pumps,  and  others.  Among  the
several assaults, these devices can be subjected to include
ransomware,  man-in-the-middle,  and  DoS.  Several
research  applied  machine  learning  algorithms  on  the
medical  information  mart  for  intensive  care  (MIMIC)
dataset,  comprising  discrete  structured  clinical  data,
physio-logical  waveform  data,  free  text  documents,  and
radiology  imaging  reports,  according  to  the  study.  T.
Mohamed  et  al.  [27]  defined  a  security  architecture
suitable  for  mobile  e-health  platforms.  It  uses
computerized  personal  health  records  to  establish  and
manage pharmaceutical  prescription services in mobility
settings. This design uses RFID technology to provide safe
and  authorized  interactions.  Wireless  Sensor  Networks
(WSNs)  are  a  weak  link  in  e-health  systems,  prompting
researchers to address security concerns. In Gonçalves et
al.’s  study  [28]  an  end-to-end  safe  routing  using  block
chain  architecture  was  created  and  a  technique  for
intrusion  prevention  in  mobile  WSNs  is  offered.  The
method takes the restricted funds and flexible structure of
mobile  WSN  into  account.  Table  2  contains  a  brief
overview  of  the  literature  review  and  shows  that  no
technique is available which can identify the cyber- attack
as  well  as  the  risk  can  also  be  estimated.  So  in  this
research, our aim is to develop a model that can do both
attack detection as well as risk estimation.

Table 2. Research gap identified with existing work.

Author
Limitation

Technique
PCS iPCS Cyber

Attack Detection
Cyber

Attack Risk Estimation

[21] × × × Decision
Fusion

[22] × × ×
Naive

Bayes, LR, KNN,
Adaboost

[23] × × Task
Schedul- ing

[24] × × PAD

[25] × × × Deep
Learning
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Author
Limitation

Technique
PCS iPCS Cyber

Attack Detection
Cyber

Attack Risk Estimation

[27] × × × Random
Forest, Neural Network

[29] × × × Decision-
analysis- based

[30] × × Blockchain

[31] × Penetration

6. METHOD

6.1. Problem Statement

6.1.1. Notation
This study is related to pharmaceutical care services.

There  are  10  stakeholders  in  our  research.  The
stakeholders  are  as  follows.  The  patient  is  the  main
element  of  the  PCS,  followed  by  the  Hospital,  Staff,

Doctors,  MR,  Retailers,  Wholesalers  &  Raw  Material
Manufacturers, Investors, Drug Manufacturers and lastly
PBM & Governance. For each, the notation is mentioned in
Table 3. Subsequently, different features were selected to
design a PCS plan for a patient. The complete features are
listed in Table 4. When a plan is prepared for the patient,
many  factors  must  be  considered  before  training  and
testing.

Table 3. Notations.

Stakeholder’s Name Notation

Patient NP

Hospital NH

Staff NS

Doctor ND

Medical Representative NMR

Retailer NR

Wholesalers & Raw material Manufacturer NW(RM)

Investor NI

Drug Manufacturer NDM

Pharmacy Business Management & Governance NPBM(G)

Table 4. Features required for PCS.

Feature Sub Feature Patient
(Pnt)

Pharmacist
(Phst)

Doctor
(Dor)

Healthcare
Organisation

(Horg)

Demographic
(Pde)

Name(Pn) √ × √ √
Age(Pa) √ × √ √

Gender(Pg) √ × √ √
DoB(Pdob) √ × √ √

Medical
(Pme)

Weight & Height(Pwh) √ × √ √
Current Symptoms(Psym) √ × √ √
Past Medical History(Pmh) √ × √ √

Lab Information(Pli) √ × √ √
Allergies and Intolerance(Pai) √ × √ √

Vital Sign(Pvs) √ × √ √

Design Therapist Plan
(Pdtp)

Prescribe medication(Pme) √ √ √ √
Medication used Before(Pmeb) √ × √ √

Medical Regimen(Pmr) √ × √ √
Compliance with therapy(Pct) √ × √ √

Medication allergies and Intolerances(Pme) √ × √ √
Lab Test(Plt) √ × √ √
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Feature Sub Feature Patient
(Pnt)

Pharmacist
(Phst)

Doctor
(Dor)

Healthcare
Organisation

(Horg)

Lifestyle(Pl)

Diet Exercise(Pde) √ × √ √
Recreation(Pre) √ × √ √

Tobacco/alcohol/caffeine/other substance use or abuse(Pls) √ × √ √
Daily activities(Pda) √ × √ √

Implementing Therapeutic
Plan(Pitp)

Dosage(Pdo) √ √ √ √
Medical Regimen(Pmr) √ × √ √

Diet Exercise(Pde) √ × √ √

Monitoring Therapeutic
Plan(Pmtp)

Patient Status(Pst) √ × √ √
Patient Condition(Pco) √ × √ √

Medication theraphy(Pmt) √ × √ √

Fig. (1). Proposed model.

6.2.2. Proposed Model
In  Fig.  (1),  the  suggested  model  is  displayed.

Architecture is created with CPS’s assistance, with smart
medical devices at the bottom that gather the necessary
data  from  the  surroundings.  Following  that,  the  data  is
examined  using  a  variety  of  cutting-edge  technologies,
each  of  which  is  accessed  through  an  interface.  This
filtered  data  is  available  for  use  by  various  parties.  We
have  chosen  11  stakeholders:  Patient,  Hospital,  Staff,
Doctors,  MR,  Retailers,  Wholesalers,  Raw  Material
Manufacturers, Investors, Drug Manufacturers, and last is
the  PBM  and  Governance  for  our  study,  and  protecting
privacy and security is our top priority. For this, we have
developed  algorithms  that  can  detect  different  types  of
cyberattacks on 11 different stakeholders, and after that,

risk  estimation  is  also  done.  For  analysis  and
preprocessing,  Algorithm  1  is  used.  For  detection,
Algorithm  2  is  used.

6.3.3. Problem Formulation
First,  we  gathered  the  dataset  for  analysis  of  the

performance  of  the  suggested  approach  from  many
healthcare institutions. For analysis and comparison of the
suggested method’s performance with the already-existing
algorithm,  other  algorithms  are  also  applied,  including
Decision  tree,  Random  forest,  Diffie-Hellman,  Deep
convolution  network,  and  Naïve  Bayes.  To  start  the
investigation, we eliminated null and undesired elements
from all three datasets using conventional pre-processing
techniques. We applied data computation and normalizing
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Fig. (2). State transitions.

methods  to  remove  duplicate  features.  We  also  scale
features using principal component analysis (PCA). Based
on  the  component  variance  factor,  several  traits  were
determined:  we  mapped  category  features  to  numerical
values using the label encoding method. We investigated
binary  and  13-class  classifications  of  different  cyber
threats  and  attacks.  Aiming  to  consolidate  data
distribution,  the  centralized  technique  for  multi-source
transfer learning assesses the relationship depending on
consistency  and  similarity.  In  data  transmission,  the
Kullback-Leibler  (KL)  divergence  gauges  the  entropy
difference  between  two  different  distributions.  We
examine the likelihood of uniform information distribution
using  the  KL  divergence.  The  first  algorithm  uses  a
centralized  multi-source  transfer  learning  method.  We
assume a cyber-attack occurs at an unknown moment (y)
and  try  to  find  it  as  soon  as  possible.  The  attacker’s
techniques and talents. This presents the quickest change
detection problem for which the objective is to reduce the
false alarm rate as well as the average detection latency.
Fig.  (2)  explains  this  issue.  Two  hidden  states  exist:
suspicious  state  and  preliminary  attack  due  to  the
unknown  attack  launch  time  y:  At  each  time  ti,  after
collecting the measurement vector yt, the agent (defender)
has two options: halt and announce an attack or proceed
to  take  observations.  When  the  action  stop  option  is
selected, the system is assumed to enter a terminal state
and remain there permanently.

Under normal operating conditions, the system model
can  estimate  the  conditional  observation  probability
associated with the initial state. However, due to unknown
attacking  strategies,  the  conditional  observation
probability  for  the  prevention  state  is  assumed  to  be
completely unknown. The chance of transitioning between
the preliminary state and the prevention state is uncertain
due  to  the  unknown  assault  launch  time  (r).  To  reduce
detection  delays  and  false  alarm  rates,  both  false  alarm
and detection delay events should incur charges. Let c > 0
represent the proportional cost of a detection delay v/s a
false alarm occurrence. If the true underlying state is the
preliminary  state  and the  action  to  halt  is  taken,  a  false
alarm occurs, resulting in a penalty of 1 for the defender.
If  the  underlying  state  is  the  prevention  state  and  the

action to continue is chosen, the defender incurs a cost of
c due to the detection delay. For all other (hidden) state-
action pairings, the cost is set to zero. Once the action halt
is chosen, the defender will not incur any more costs while
in the terminal state.  The defender’s goal is  to minimize
their predicted total cost during this time. The defender’s
goal is to minimize its predicted overall cost by carefully
picking  its  actions.  The  defender  must  identify  the
appropriate  moment  to  declare  an  attack  depending  on
their observations. We suggest using a limited history of
observations.  We  suggest  employing  an  RL  algorithm to
learn  an  AT(s,  a)  value,  which  represents  the  projected
future cost for each observation-action combination (s, a).
This value is then kept in an AT-table. After learning the
AT-table, the defender’s policy will be to select the action
a with the lowest AT(s, a) for each observation. To train, a
simulation  environment  is  constructed.  During  the
procedure, the defender acts based on their observations
and  receives  a  cost  from  the  simulation.  Based  on  this
experience, the defender modifies and learns an AT-table.

During  the  online  detection  phase,  observations  are
used to select the action with the lowest projected future
cost (AT value) based on the previously learned AT-table.
The  online  detection  phase  continues  until  the  defender
chooses the action prevention state. When the preventive
state  is  selected,  an  attack  is  declared  and  the  process
terminates.  After  announcing  an  attack,  the  online
detection phase can be resumed after the system has been
restored to normal operating circumstances. That is, once
a  defender  is  taught,  no  more  training  is  required.  We
summarize the learning and online detection stages of

Algorithm 1: Learning Algorithm
1: Collect Sample Data from the iCPS server for all 10

nodes (NP, NH,NS, ND, NMR, NR, NW(RM),NI,NDM,NPBM(G))
2:  Process  the  primary  data  for  removing  unwanted

features
3: SD<- split(x,y)
4: for i=1,2….10 do
for sd subset SD do
ES<- ES-ŋ Ṿfe(ES,SD)
end inner loop
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end outer loop
5.Process data from the server
6.Feature Selected
7. Use PCA (Model dataset)
8. while PCA (DataSet Features) do
Evaluate the covariance matrix
Acquire eigenvalues and values
end loop
9.  Represents  the  reduced feature  set  obtained after

PCA.
10. Divide the data set into D1 and D2

11.D1old=D1old
i

D2old
i = D2oldL

i U D1oldU
i

12. Map D1 D2 into relation matrix
13. for i=1,2,….,N do

compute wi by MMD
Train the learner on a weighted sample from D1
End loop
14. The initial a
Initialize AT(s,a)
for i= 1 to 10 do
for j=1 to 10 do
t ← 0
st ← preliminary
select  an  initial  state  ‘st’  based  on  the  preliminary

state  and  choose  initial  action  a=continue
while st ≠ prevention and t< T do
ti←ti+1
if a= stop then
st← Prevention
r← ᴨ{t< г}
AT (s,a) ← AT (s,a)+α(r- AT (s,a))
elseif a=continue then
If ti>= г then
r ←c
st ←suspected
else
r←0
endif
Collect measurements mt and update the Kalman filter

using:
êt∣t−1​=M1êt−1∣t−1​+M2ut−1 ​ and

Pt∣t−1​=M1Pt−1∣t−1​M1T+AT
Update: Kalman Gain

Kt ​=Pt∣t−1​HT(HPt∣t−1 ​HT+R)−1

State Update
êt∣t​=êt∣t−1 ​+Kt ​(mt ​−Hêt∣t−1​)
Error Covariance Update
Pt∣t​=(I−Kt ​H)Pt∣t−1

AT(s, a) ← AT(s, a) + α (r + AT(s’, a’) − AT(s, a))
s ← s’, a ← a’
end if
end while
end for
end for
Procedure Risk Estimation (StT,ADT(1 to 10))
1: for each stakholder in StT do
2:  AttackList  ←  IdentifyRelevantAttacks  using

Algorithm  2
3: for each attack in AttackList ADT do
4: Impact ← Calculate Attack Impact (ADT)
5: Detectability ← Calculate Attack Detectability(ADT)
6: REF ← Impact × Detectability
7: MitigationList ← GetAttackMitigation (FMT)
8: end for
9: end for
10:  return  AttackLists,  Risk  Estimation  and

MitigationLists
11: end procedure

Algorithm 2: Cyber Attack Detection Algorithm
1. Input: Algorithm-learned AT-table 1.
2:  Select  the  initial  a  =  continue  and  an  initial  s

depending  on  the  prior  situation.
3. t ← 0
4: do 5: t → t + 1 while a ≠ stop
Sixth, gather measurements for each item.
7:  Find  the  new  s  as  it  appears  in  Algorithm  1  lines

20–22.
8: a ← arg minaQ(o, a).
9: finish whilst
10: Claim an assault and stop the process.
In Algorithm 1, after detecting an attack, we have also

defined a procedure for risk estimation. The approach is to
systematically assess risks by identifying attacks for each
stakeholder, quantifying their effect and detectability, and
suggesting  mitigation  solutions.  Data  gathered  from  the
intelligent  cyber-physical  system  (iCPS)  server  is
processed and prepared for cyberattack detection by this
algorithm.  It  starts  by  dividing  the  dataset  into  subsets
and  eliminating  any  unnecessary  features.  Using  an
evaluation function, superfluous variables are removed as
part  of  the  feature  selection  process.  After  that,
dimensionality is decreased and key features are extracted
using Principal Component Analysis (PCA). For additional
processing, the dataset is split into two sets (D1 and D2),
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guaranteeing  an  optimal  feature  representation  that
improves the effectiveness of attack detection. Impact: It
indicates  the  severity  of  the  effects  if  the  attack  is
successful.  Detectability:  This  measures  how readily  the
attack  may  be  discovered  or  detected  by  the  system  or
security team. The Risk Estimation Factor (REF) combines
impact and detectability to provide an overall assessment
of  the  danger  presented  by  an  assault.  A  greater  REF
signifies  a  more  serious  threat.  Mitigation  refers  to  the
techniques or procedures utilized to lessen the danger or
severity  of  an  attack.  Algorithm  2  is  used  to  find  the
stakeholder’s  relevant  attack  types  and  put  them  in
AttackList.  Loop  through  each  assault  in  AttackList  that
matches  one  of  the  attack  types  mentioned  in  the  ADT.
This  algorithm  uses  a  reinforcement  learning-based
methodology to identify cyberattacks. It iteratively adjusts
its  state  depending  on  gathered  measurements  after
beginning  with  an  initial  state  and  action  based  on
historical  data.  By reducing the attack risk function,  the
system detects possible threats and continuously assesses
its  current  state.  By  adding  additional  observations  to
state  estimates,  the  Kalman  filter  improves  detection
accuracy.  The  operation  halts  and  the  system  marks  an
assault if an attack is identified. In order to prioritize the
required mitigation steps, the risk estimate process then
computes  the  attack  impact,  detectability,  and  risk
estimation  factor  (REF).  To  evaluate  the  impact  of  each
attack,  it  is  important  to  consider how damaging it  is  to
the  system,  the  stakeholders,  and  the  overall
organizational objectives. Additionally, assess how easily
the  attack  can  be  detected  by  factoring  in  the  level  of
monitoring, auditing, and available defense mechanisms..
The  Risk  Exposure  Factor  (REF)  is  computed  by
multiplying  the  attack’s  impact  by  its  detection
probability. This provides an overall risk assessment that
accounts for both the harm and the chance of identifying
the  assault.  Viable  mitigation  measures  for  each  assault
using the FMT are determined as below:

Store the mitigation techniques in the MitigationList.
End  the  loop  that  processes  each  attack  for  the

stakeholder.
End the loop that iterates through each stakeholder.
Return  the  AttackList,  RiskEstimationList,  and

MitigationList.
The  final  result  includes  lists  of  potential  attacks,

evaluated  risks,  and  recommended  mitigations.

7. RESULT AND DISCUSSION
We assessed the suggested model by dividing the data

into training and testing sets. About 30% of the data is set
aside for testing to evaluate generalization on unobserved
data,  while  the  remaining  70%  is  used  for  training  to
ensure  that  the  model  captures  a  variety  of  attack
patterns.  This  ratio  ensures  an  accurate  performance
evaluation  while  preventing  underfitting  by  offering
enough  training  samples.  Finding  the  ideal  balance
between accuracy and practical applicability is a regular
procedure  in  cybersecurity  research.  Depending  on  the

size and complexity of the dataset,  alternative splits like
60-40  or  90-10  may  be  utilized.  The  following  are  the
performance  metrics:

• Precision: (Eq.1) calculates the fraction of accurately
classified  attack  classes  compared  to  expected  attack
results.

(1)

•  Recall:  The  fraction  of  properly  classified  assaults
compared to the total number of attacks is obtained using
(Eq. 2).

(2)

• F1-Score: It is denoted as the mean of the harmonic
between RC and P, which is determined as shown in Eq. 3.

(3)

We evaluated our suggested model using 16-class and
binary  classification  to  analyze  threat  identification  and
prediction  of  various  cyber-attack  types.  We  evaluated
detection  accuracy  using  a  centralized  multi-source
transfer  learning  model,  taking  into  account
heterogeneity,  data availability,  and privacy.  Centralized
learning allows for better identification of unknown large-
scale threats due to the abundance of available data. This
research  compares  several  machine  learning  and  deep
learning approaches to the suggested model. The models’
performance is evaluated using the same datasets through
four  steps:  dataset  processing  and  analysis,  centralized
learning, feature selection, and data classification with a
transfer  learning  model.  Fig.  (3)  compares  the
performance  of  a  centralized  multi-source  transfer
learning system to current techniques, including Random
Forest (RF),  Decision Tree (DT),  Diffie-Hallman, Support
Vector Machine (SVM), Naïve Bayes and Deep Convolution
Neural Network (DCNN). Fig. (3) shows an examination of
potential  algorithms  for  16-class,  8-class,  and  4-class
classifications.  The  suggested  approach  achieves  the
maximum accuracy at  97.89% for 16-class classification,
98.45% for 8- 8-class classification, and 98.97% for 4-class
classification.

Tables 5-14 compares machine learning methodologies
to the proposed centralized multi-source transfer learning
model  for  16-class  classification,  including  Precision,
Recall, and F1-Score for all 10 stakeholders. Tables 5-14
compare  the  performance  parameters  of  recall  (RC),
precision  (P),  and  F1-score  for  16-class  classification
utilizing machine learning approaches including SVM, RF,
Naive Bayes, DT, Diffie-Hellman, and DCNN. Each table is
generated for all 10 stakeholders. Table 5 is for Patients,
Table 6 is for the Hospital, Table 7 is for Staff, Table 8 is
for Doctors, Table 9 is for MR, Table 10 is for
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Fig. (3). Comparative result based on 16,8 and 4-class classification.

Table 5. Cyber attack detection table for stakeholder 1.

Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
Network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

DT
P 0.99891 0.897001 0.69825 0.96864 0.99891 0.89801 0.96864 0.990495 0.893445 0.668325

RC 0.97485 0.991935 0.59295 0.9447 0.97485 0.87435 0.9447 0.9797 0.991935 0.59295
F1-Score 0.97485 0.99495 0.603 0.9447 0.97485 0.87435 0.9447 0.9797 0.99495 0.603

RF
P 0.991935 0.891435 0.70149 0.97485 0.991935 0.901485 0.97485 0.99687 0.891435 0.70149

RC 0.9849 0.903495 0.804 0.95475 0.9849 0.90249 0.95475 0.9898 0.903495 0.804
F1-Score 0.99495 0.903495 0.7839 0.93465 0.99495 0.903495 0.93465 0.9999 0.903495 0.7839

SVM
P 0.933645 0.833145 0.67335 0.99495 0.933645 0.99294 0.99495 0.93829 0.833145 0.67335

RC 0.923595 0.823095 0.9045 0.99495 0.923595 0.995955 0.99495 0.92819 0.823095 0.9045
F1-Score 0.9849 0.8844 0.77385 0.9849 0.9849 0.95475 0.9849 0.9898 0.8844 0.77385

DCNN
P 0.93264 0.93264 0.6633 0.9849 0.93264 0.833145 0.9849 0.93728 0.93264 0.6633

RC 0.99495 0.99495 0.9045 0.993945 0.99495 0.89445 0.993945 0.9999 0.99495 0.9045
F1-Score 0.97284 0.97284 0.7638 0.9648 0.97284 0.90048 0.9648 0.97768 0.97284 0.7638

Diffie-Hallman
P 0.923595 0.823095 0.63315 0.99495 0.923595 0.823095 0.99495 0.92819 0.823095 0.63315

RC 0.97485 0.8844 0.8643 0.97485 0.97485 0.87435 0.97485 0.9797 0.8844 0.8643
F1-Score 0.9849 0.893445 0.73365 0.97485 0.9849 0.8844 0.97485 0.9898 0.893445 0.73365

Naïve Bayes
P 0.89445 0.993945 0.7638 0.99495 0.89445 0.89445 0.99495 0.8989 0.993945 0.7638

RC 0.93264 0.9849 0.8844 0.9246 0.93264 0.93264 0.9246 0.93728 0.9849 0.8844
F1-Score 0.97485 0.99495 0.77385 0.97485 0.97485 0.97485 0.97485 0.9797 0.99495 0.77385

Proposed
P 0.99495 0.95475 0.79395 0.9648 0.99495 0.97485 0.9648 0.9999 0.95475 0.79395

RC 0.9849 0.89445 0.89445 0.9447 0.9849 0.99495 0.9447 0.9898 0.89445 0.89445
F1-Score 0.995955 0.99495 0.8844 0.99495 0.995955 0.923595 0.99495 0.991991 0.99495 0.8844

Table 6. Cyber attack detection table for stakeholder 2.

Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
Network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

DT
P 0.99495 0.893445 0.668325 0.9648 0.99495 0.89445 0.9648 0.9999 0.893445 0.668325

RC 0.97485 0.991935 0.59295 0.9447 0.97485 0.87435 0.9447 0.9797 0.991935 0.59295
F1-Score 0.97485 0.99495 0.603 0.9447 0.97485 0.87435 0.9447 0.9797 0.99495 0.603

RF
P 0.991935 0.891435 0.70149 0.97485 0.991935 0.901485 0.97485 0.99687 0.891435 0.70149

RC 0.9849 0.903495 0.804 0.95475 0.9849 0.90249 0.95475 0.9898 0.903495 0.804
F1-Score 0.99495 0.903495 0.7839 0.93465 0.99495 0.903495 0.93465 0.9999 0.903495 0.7839



Estimation Technique for Intelligent Cyber-Physical Systems in PCS 13

Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
Network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

SVM
P 0.933645 0.833145 0.67335 0.99495 0.933645 0.99294 0.99495 0.93829 0.833145 0.67335

RC 0.923595 0.823095 0.9045 0.99495 0.923595 0.995955 0.99495 0.92819 0.823095 0.9045
F1-Score 0.9849 0.8844 0.77385 0.9849 0.9849 0.95475 0.9849 0.9898 0.8844 0.77385

DCNN
P 0.93264 0.93264 0.6633 0.9849 0.93264 0.833145 0.9849 0.93728 0.93264 0.6633

RC 0.99495 0.99495 0.9045 0.993945 0.99495 0.89445 0.993945 0.9999 0.99495 0.9045
F1-Score 0.97284 0.97284 0.7638 0.9648 0.97284 0.90048 0.9648 0.97768 0.97284 0.7638

Diffie-Hallman
P 0.923595 0.823095 0.63315 0.99495 0.923595 0.823095 0.99495 0.92819 0.823095 0.63315

RC 0.97485 0.8844 0.8643 0.97485 0.97485 0.87435 0.97485 0.9797 0.8844 0.8643
F1-Score 0.9849 0.893445 0.73365 0.97485 0.9849 0.8844 0.97485 0.9898 0.893445 0.73365

Naïve Bayes
P 0.89445 0.993945 0.7638 0.99495 0.89445 0.89445 0.99495 0.8989 0.993945 0.7638

RC 0.93264 0.9849 0.8844 0.9246 0.93264 0.93264 0.9246 0.93728 0.9849 0.8844
F1-Score 0.97485 0.99495 0.77385 0.97485 0.97485 0.97485 0.97485 0.9797 0.99495 0.77385

Proposed
P 0.99495 0.95475 0.79395 0.9648 0.99495 0.97485 0.9648 0.9999 0.95475 0.79395

RC 0.9849 0.89445 0.89445 0.9447 0.9849 0.99495 0.9447 0.9898 0.89445 0.89445
F1-Score 0.995955 0.99495 0.8844 0.99495 0.995955 0.923595 0.99495 0.991991 0.99495 0.8844

Table 7. Cyber attack detection table for stakeholder 3.

Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
Network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

DT
P 0.9999 0.89789 0.67165 0.9696 0.9999 0.8989 0.9696 0.991485 0.89789 0.668325

RC 0.9797 0.99687 0.5959 0.9494 0.9797 0.8787 0.9494 0.971455 0.99687 0.59295
F1-Score 0.9797 0.9999 0.606 0.9494 0.9797 0.8787 0.9494 0.971455 0.9999 0.603

RF
P 0.99687 0.89587 0.70498 0.9797 0.99687 0.90597 0.9797 0.988481 0.89587 0.70149

RC 0.9898 0.90799 0.808 0.9595 0.9898 0.90698 0.9595 0.98147 0.90799 0.804
F1-Score 0.9999 0.90799 0.7878 0.9393 0.9999 0.90799 0.9393 0.991485 0.90799 0.7839

SVM
P 0.93829 0.83729 0.6767 0.9999 0.93829 0.99788 0.9999 0.930394 0.83729 0.67335

RC 0.92819 0.82719 0.909 0.9999 0.92819 1.00091 0.9999 0.920379 0.82719 0.9045
F1-Score 0.9898 0.8888 0.7777 0.9898 0.9898 0.9595 0.9898 0.98147 0.8888 0.77385

DCNN
P 0.93728 0.93728 0.6666 0.9898 0.93728 0.83729 0.9898 0.929392 0.93728 0.6633

RC 0.9999 0.9999 0.909 0.99889 0.9999 0.8989 0.99889 0.991485 0.9999 0.9045
F1-Score 0.97768 0.97768 0.7676 0.9696 0.97768 0.90496 0.9696 0.969452 0.97768 0.7638

Diffie-Hallman
P 0.92819 0.82719 0.6363 0.9999 0.92819 0.82719 0.9999 0.920379 0.82719 0.63315

RC 0.9797 0.8888 0.8686 0.9797 0.9797 0.8787 0.9797 0.971455 0.8888 0.8643
F1-Score 0.9898 0.89789 0.7373 0.9797 0.9898 0.8888 0.9797 0.98147 0.89789 0.73365

Naïve Bayes
P 0.8989 0.99889 0.7676 0.9999 0.8989 0.8989 0.9999 0.891335 0.99889 0.7638

RC 0.93728 0.9898 0.8888 0.9292 0.93728 0.93728 0.9292 0.929392 0.9898 0.8844
F1-Score 0.9797 0.9999 0.7777 0.9797 0.9797 0.9797 0.9797 0.971455 0.9999 0.77385

Proposed
P 0.9999 0.9595 0.7979 0.9696 0.9999 0.9797 0.9696 0.991485 0.9595 0.79395

RC 0.9898 0.8989 0.8989 0.9494 0.9898 0.9999 0.9494 0.98147 0.8989 0.89445
F1-Score 0.992982 0.99198 0.8888 0.99198 0.992982 0.920838 0.99198 0.992487 0.99099 0.8844

Table 8. Cyber attack detection table for stakeholder 4.

Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
Network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

DT
P 0.99198 0.890778 0.674975 0.96192 0.99198 0.89178 0.96192 0.996138 0.890334 0.668325

RC 0.98455 0.987494 0.59885 0.94047 0.970485 0.870435 0.94047 0.976014 0.988481 0.59295
F1-Score 0.98455 0.990495 0.609 0.94047 0.970485 0.870435 0.94047 0.976014 0.991485 0.603

RF
P 0.988974 0.888774 0.70847 0.97194 0.988974 0.898794 0.97194 0.993119 0.888331 0.70149

RC 0.9947 0.912485 0.812 0.96425 0.9947 0.91147 0.96425 0.986076 0.900349 0.804
F1-Score 0.99198 0.900798 0.7917 0.93186 0.99198 0.900798 0.93186 0.996138 0.900349 0.7839
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Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
Network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

SVM
P 0.942935 0.841435 0.68005 0.990495 0.929465 0.988494 0.990495 0.93476 0.830244 0.67335

RC 0.932785 0.831285 0.9135 0.990495 0.91946 0.991496 0.990495 0.924698 0.820229 0.9045
F1-Score 0.9947 0.8932 0.78155 0.9947 0.9947 0.96425 0.9947 0.986076 0.88132 0.77385

DCNN
P 0.94192 0.94192 0.6699 0.9947 0.94192 0.841435 0.9947 0.933754 0.929392 0.6633

RC 0.99198 0.99198 0.9135 0.990978 0.99198 0.89178 0.990978 0.996138 0.991485 0.9045
F1-Score 0.98252 0.98252 0.7714 0.9744 0.98252 0.90944 0.9744 0.974002 0.969452 0.7638

Diffie-Hallman
P 0.932785 0.831285 0.63945 0.990495 0.91946 0.81941 0.990495 0.924698 0.820229 0.63315

RC 0.98455 0.8932 0.8729 0.98455 0.98455 0.88305 0.98455 0.976014 0.88132 0.8643
F1-Score 0.9947 0.902335 0.74095 0.98455 0.9947 0.8932 0.98455 0.986076 0.890334 0.73365

Naïve Bayes
P 0.90335 0.989495 0.7714 0.990495 0.890445 0.890445 0.990495 0.895518 0.990484 0.7638

RC 0.94192 0.9947 0.8932 0.9338 0.94192 0.94192 0.9338 0.933754 0.98147 0.8844
F1-Score 0.98455 0.990495 0.78155 0.970485 0.970485 0.970485 0.970485 0.976014 0.991485 0.77385

Proposed
P 0.99198 0.9519 0.80185 0.96192 0.99198 0.97194 0.96192 0.996138 0.951425 0.79395

RC 0.9947 0.90335 0.90335 0.9541 0.9947 0.990495 0.94047 0.986076 0.891335 0.89445
F1-Score 0.992982 0.99198 0.8932 0.99198 0.992982 0.920838 0.99198 0.997144 0.991485 0.8844

Table 9. Cyber attack detection table for stakeholder 5.

Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
Network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

DT
P 0.99198 0.890778 0.6783 0.96192 0.99198 0.89178 0.96192 0.992475 0.894512 0.668325

RC 0.9894 0.987197 0.6018 0.940188 0.970194 0.870174 0.940188 0.99425 0.993119 0.59295
F1-Score 0.9894 0.990198 0.612 0.940188 0.970194 0.870174 0.940188 0.99425 0.996138 0.603

RF
P 0.988974 0.888774 0.71196 0.97194 0.988974 0.898794 0.97194 0.989468 0.892499 0.70149

RC 0.9996 0.91698 0.816 0.969 0.9996 0.91596 0.969 0.98245 0.904574 0.804
F1-Score 0.99198 0.900798 0.7956 0.93186 0.99198 0.900798 0.93186 0.992475 0.904574 0.7839

SVM
P 0.94758 0.84558 0.6834 0.990198 0.929186 0.988198 0.990198 0.952225 0.83414 0.67335

RC 0.93738 0.83538 0.918 0.990198 0.919184 0.991198 0.990198 0.941975 0.824078 0.9045
F1-Score 0.9996 0.8976 0.7854 0.9996 0.9996 0.969 0.9996 0.98245 0.885456 0.77385

DCNN
P 0.94656 0.94656 0.6732 0.9996 0.94656 0.84558 0.9996 0.9512 0.933754 0.6633

RC 0.99198 0.99198 0.918 0.990978 0.99198 0.89178 0.990978 0.992475 0.996138 0.9045
F1-Score 0.98736 0.98736 0.7752 0.9792 0.98736 0.91392 0.9792 0.9922 0.974002 0.7638

Diffie-Hallman
P 0.93738 0.83538 0.6426 0.990198 0.919184 0.819164 0.990198 0.941975 0.824078 0.63315

RC 0.9894 0.8976 0.8772 0.9894 0.9894 0.8874 0.9894 0.99425 0.885456 0.8643
F1-Score 0.9996 0.90678 0.7446 0.9894 0.9996 0.8976 0.9894 0.98245 0.894512 0.73365

Naïve Bayes
P 0.9078 0.989198 0.7752 0.990198 0.890178 0.890178 0.990198 0.91225 0.995132 0.7638

RC 0.94656 0.9996 0.8976 0.9384 0.94656 0.94656 0.9384 0.9512 0.986076 0.8844
F1-Score 0.9894 0.990198 0.7854 0.970194 0.970194 0.970194 0.970194 0.99425 0.996138 0.77385

Proposed
P 0.99198 0.9519 0.8058 0.96192 0.99198 0.97194 0.96192 0.992475 0.95589 0.79395

RC 0.9996 0.9078 0.9078 0.9588 0.9996 0.990198 0.940188 0.98245 0.895518 0.89445
F1-Score 0.992982 0.99198 0.8976 0.99198 0.992982 0.920838 0.99198 0.993478 0.996138 0.8844

Table 10. Cyber attack detection table for stakeholder 6.

Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
Network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

DT
P 0.990594 0.889533 0.681625 0.960576 0.990594 0.890534 0.960576 0.992475 0.893445 0.668325

RC 0.970582 0.987592 0.60475 0.940564 0.970582 0.870522 0.940564 0.99425 0.991935 0.59295
F1-Score 0.970582 0.990594 0.615 0.940564 0.970582 0.870522 0.940564 0.99425 0.99495 0.603

RF
P 0.987592 0.887532 0.71545 0.970582 0.987592 0.897538 0.970582 0.989468 0.891435 0.70149

RC 0.980588 0.899539 0.82 0.95057 0.980588 0.898539 0.95057 0.98245 0.903495 0.804
F1-Score 0.990594 0.899539 0.7995 0.930558 0.990594 0.899539 0.930558 0.992475 0.903495 0.7839
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Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
Network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

SVM
P 0.929557 0.829497 0.68675 0.990594 0.929557 0.988593 0.990594 0.952225 0.833145 0.67335

RC 0.919551 0.819491 0.9225 0.990594 0.919551 0.991595 0.990594 0.941975 0.823095 0.9045
F1-Score 0.980588 0.880528 0.78925 0.980588 0.980588 0.95057 0.980588 0.98245 0.8844 0.77385

DCNN
P 0.928557 0.928557 0.6765 0.980588 0.928557 0.829497 0.980588 0.9512 0.93264 0.6633

RC 0.990594 0.990594 0.9225 0.989593 0.990594 0.890534 0.989593 0.992475 0.99495 0.9045
F1-Score 0.968581 0.968581 0.779 0.960576 0.968581 0.896538 0.960576 0.9922 0.97284 0.7638

Diffie-Hallman
P 0.919551 0.819491 0.64575 0.990594 0.919551 0.819491 0.990594 0.941975 0.823095 0.63315

RC 0.970582 0.880528 0.8815 0.970582 0.970582 0.870522 0.970582 0.99425 0.8844 0.8643
F1-Score 0.980588 0.889533 0.74825 0.970582 0.980588 0.880528 0.970582 0.98245 0.893445 0.73365

Naïve Bayes
P 0.890534 0.989593 0.779 0.990594 0.890534 0.890534 0.990594 0.91225 0.993945 0.7638

RC 0.928557 0.980588 0.902 0.920552 0.928557 0.928557 0.920552 0.9512 0.9849 0.8844
F1-Score 0.970582 0.990594 0.78925 0.970582 0.970582 0.970582 0.970582 0.99425 0.99495 0.77385

Proposed
P 0.990594 0.95057 0.80975 0.960576 0.990594 0.970582 0.960576 0.992475 0.95475 0.79395

RC 0.980588 0.890534 0.91225 0.940564 0.980588 0.990594 0.940564 0.98245 0.89445 0.89445
F1-Score 0.991595 0.990594 0.902 0.990594 0.991595 0.919551 0.990594 0.993478 0.99495 0.8844

Table 11. Cyber attack detection table for stakeholder 7.

Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
Network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

DT
P 0.99594 0.894334 0.68495 0.96576 0.99594 0.89534 0.96576 0.99297 0.893445 0.668325

RC 0.97582 0.992922 0.6077 0.94564 0.97582 0.87522 0.94564 0.9991 0.991935 0.59295
F1-Score 0.97582 0.99594 0.618 0.94564 0.97582 0.87522 0.94564 0.9991 0.99495 0.603

RF
P 0.992922 0.892322 0.71894 0.97582 0.992922 0.902382 0.97582 0.989961 0.891435 0.70149

RC 0.98588 0.904394 0.824 0.9557 0.98588 0.903388 0.9557 0.98294 0.903495 0.804
F1-Score 0.99594 0.904394 0.8034 0.93558 0.99594 0.904394 0.93558 0.99297 0.903495 0.7839

SVM
P 0.934574 0.833974 0.6901 0.99594 0.934574 0.993928 0.99594 0.95687 0.833145 0.67335

RC 0.924514 0.823914 0.927 0.99594 0.924514 0.996946 0.99594 0.94657 0.823095 0.9045
F1-Score 0.98588 0.88528 0.7931 0.98588 0.98588 0.9557 0.98588 0.98294 0.8844 0.77385

DCNN
P 0.933568 0.933568 0.6798 0.98588 0.933568 0.833974 0.98588 0.95584 0.93264 0.6633

RC 0.99594 0.99594 0.927 0.994934 0.99594 0.89534 0.994934 0.99297 0.99495 0.9045
F1-Score 0.973808 0.973808 0.7828 0.96576 0.973808 0.901376 0.96576 0.99704 0.97284 0.7638

Diffie-Hallman
P 0.924514 0.823914 0.6489 0.99594 0.924514 0.823914 0.99594 0.94657 0.823095 0.63315

RC 0.97582 0.88528 0.8858 0.97582 0.97582 0.87522 0.97582 0.9991 0.8844 0.8643
F1-Score 0.98588 0.894334 0.7519 0.97582 0.98588 0.88528 0.97582 0.98294 0.893445 0.73365

Naïve Bayes
P 0.89534 0.994934 0.7828 0.99594 0.89534 0.89534 0.99594 0.9167 0.993945 0.7638

RC 0.933568 0.98588 0.9064 0.92552 0.933568 0.933568 0.92552 0.95584 0.9849 0.8844
F1-Score 0.97582 0.99594 0.7931 0.97582 0.97582 0.97582 0.97582 0.9991 0.99495 0.77385

Proposed
P 0.99594 0.9557 0.8137 0.96576 0.99594 0.97582 0.96576 0.99297 0.95475 0.79395

RC 0.98588 0.89534 0.9167 0.94564 0.98588 0.99594 0.94564 0.98294 0.89445 0.89445
F1-Score 0.996946 0.99594 0.9064 0.99594 0.996946 0.924514 0.99594 0.993973 0.99495 0.8844

Table 12. Cyber attack detection table for stakeholder 8.

Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
Network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

DT
P 0.99693 0.895223 0.688275 0.96672 0.99693 0.89623 0.96672 0.993465 0.893445 0.668325

RC 0.97679 0.993909 0.61065 0.94658 0.97679 0.87609 0.94658 0.973395 0.991935 0.59295
F1-Score 0.97679 0.99693 0.621 0.94658 0.97679 0.87609 0.94658 0.973395 0.99495 0.603

RF
P 0.993909 0.893209 0.72243 0.97679 0.993909 0.903279 0.97679 0.990455 0.891435 0.70149

RC 0.98686 0.905293 0.828 0.95665 0.98686 0.904286 0.95665 0.98343 0.903495 0.804
F1-Score 0.99693 0.905293 0.8073 0.93651 0.99693 0.905293 0.93651 0.993465 0.903495 0.7839
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Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
Network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

SVM
P 0.935503 0.834803 0.69345 0.99693 0.935503 0.994916 0.99693 0.961515 0.833145 0.67335

RC 0.925433 0.824733 0.9315 0.99693 0.925433 0.997937 0.99693 0.951165 0.823095 0.9045
F1-Score 0.98686 0.88616 0.79695 0.98686 0.98686 0.95665 0.98686 0.98343 0.8844 0.77385

DCNN
P 0.934496 0.934496 0.6831 0.98686 0.934496 0.834803 0.98686 0.96048 0.93264 0.6633

RC 0.99693 0.99693 0.9315 0.995923 0.99693 0.89623 0.995923 0.993465 0.99495 0.9045
F1-Score 0.974776 0.974776 0.7866 0.96672 0.974776 0.902272 0.96672 0.971388 0.97284 0.7638

Diffie-Hallman
P 0.925433 0.824733 0.65205 0.99693 0.925433 0.824733 0.99693 0.951165 0.823095 0.63315

RC 0.97679 0.88616 0.8901 0.97679 0.97679 0.87609 0.97679 0.973395 0.8844 0.8643
F1-Score 0.98686 0.895223 0.75555 0.97679 0.98686 0.88616 0.97679 0.98343 0.893445 0.73365

Naïve Bayes
P 0.89623 0.995923 0.7866 0.99693 0.89623 0.89623 0.99693 0.92115 0.993945 0.7638

RC 0.934496 0.98686 0.9108 0.92644 0.934496 0.934496 0.92644 0.96048 0.9849 0.8844
F1-Score 0.97679 0.99693 0.79695 0.97679 0.97679 0.97679 0.97679 0.973395 0.99495 0.77385

Proposed
P 0.99693 0.95665 0.81765 0.96672 0.99693 0.97679 0.96672 0.993465 0.95475 0.79395

RC 0.98686 0.89623 0.92115 0.94658 0.98686 0.99693 0.94658 0.98343 0.89445 0.89445
F1-Score 0.997937 0.99693 0.9108 0.99693 0.997937 0.925433 0.99693 0.994469 0.99495 0.8844

Table 13. Cyber attack detection table for stakeholder 9.

Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

DT
P 0.99792 0.896112 0.694925 0.96768 0.99792 0.89712 0.96768 0.994455 0.893445 0.668325

RC 0.97776 0.994896 0.61655 0.94752 0.97776 0.87696 0.94752 0.974365 0.991935 0.59295
F1-Score 0.97776 0.99792 0.627 0.94752 0.97776 0.87696 0.94752 0.974365 0.99495 0.603

RF
P 0.994896 0.894096 0.72941 0.97776 0.994896 0.904176 0.97776 0.991442 0.891435 0.70149

RC 0.98784 0.906192 0.836 0.9576 0.98784 0.905184 0.9576 0.98441 0.903495 0.804
F1-Score 0.99792 0.906192 0.8151 0.93744 0.99792 0.906192 0.93744 0.994455 0.903495 0.7839

SVM
P 0.936432 0.835632 0.70015 0.99792 0.936432 0.995904 0.99792 0.970805 0.833145 0.67335

RC 0.926352 0.825552 0.9405 0.99792 0.926352 0.998928 0.99792 0.960355 0.823095 0.9045
F1-Score 0.98784 0.88704 0.80465 0.98784 0.98784 0.9576 0.98784 0.98441 0.8844 0.77385

DCNN
P 0.935424 0.935424 0.6897 0.98784 0.935424 0.835632 0.98784 0.96976 0.93264 0.6633

RC 0.99792 0.99792 0.9405 0.996912 0.99792 0.89712 0.996912 0.994455 0.99495 0.9045
F1-Score 0.975744 0.975744 0.7942 0.96768 0.975744 0.903168 0.96768 0.972356 0.97284 0.7638

Diffie-Hallman
P 0.926352 0.825552 0.65835 0.99792 0.926352 0.825552 0.99792 0.960355 0.823095 0.63315

RC 0.97776 0.88704 0.8987 0.97776 0.97776 0.87696 0.97776 0.974365 0.8844 0.8643
F1-Score 0.98784 0.896112 0.76285 0.97776 0.98784 0.88704 0.97776 0.98441 0.893445 0.73365

Naïve Bayes
P 0.89712 0.996912 0.7942 0.99792 0.89712 0.89712 0.99792 0.93005 0.993945 0.7638

RC 0.935424 0.98784 0.9196 0.92736 0.935424 0.935424 0.92736 0.96976 0.9849 0.8844
F1-Score 0.97776 0.99792 0.80465 0.97776 0.97776 0.97776 0.97776 0.974365 0.99495 0.77385

Proposed
P 0.99792 0.9576 0.82555 0.96768 0.99792 0.97776 0.96768 0.994455 0.95475 0.79395

RC 0.98784 0.89712 0.93005 0.94752 0.98784 0.99792 0.94752 0.98441 0.89445 0.89445
F1-Score 0.998928 0.99792 0.9196 0.99792 0.998928 0.926352 0.99792 0.99546 0.99495 0.8844

Table 14. Cyber attack detection table for stakeholder 10.

Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
Network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

DT
P 0.99891 0.897001 0.69825 0.96864 0.99891 0.89801 0.96864 0.990495 0.893445 0.668325

RC 0.97873 0.995883 0.6195 0.94846 0.97873 0.87783 0.94846 0.970485 0.991935 0.59295
F1-Score 0.97873 0.99891 0.63 0.94846 0.97873 0.87783 0.94846 0.970485 0.99495 0.603

RF
P 0.995883 0.894983 0.7329 0.97873 0.995883 0.905073 0.97873 0.987494 0.891435 0.70149

RC 0.98882 0.907091 0.84 0.95855 0.98882 0.906082 0.95855 0.98049 0.903495 0.804
F1-Score 0.99891 0.907091 0.819 0.93837 0.99891 0.907091 0.93837 0.990495 0.903495 0.7839
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Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
Network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

SVM
P 0.937361 0.836461 0.7035 0.99891 0.937361 0.996892 0.99891 0.97545 0.833145 0.67335

RC 0.927271 0.826371 0.945 0.99891 0.927271 0.999919 0.99891 0.96495 0.823095 0.9045
F1-Score 0.98882 0.88792 0.8085 0.98882 0.98882 0.95855 0.98882 0.98049 0.8844 0.77385

DCNN
P 0.936352 0.936352 0.693 0.98882 0.936352 0.836461 0.98882 0.9744 0.93264 0.6633

RC 0.99891 0.99891 0.945 0.997901 0.99891 0.89801 0.997901 0.990495 0.99495 0.9045
F1-Score 0.976712 0.976712 0.798 0.96864 0.976712 0.904064 0.96864 0.968484 0.97284 0.7638

Diffie-Hallman
P 0.927271 0.826371 0.6615 0.99891 0.927271 0.826371 0.99891 0.96495 0.823095 0.63315

RC 0.97873 0.88792 0.903 0.97873 0.97873 0.87783 0.97873 0.970485 0.8844 0.8643
F1-Score 0.98882 0.897001 0.7665 0.97873 0.98882 0.88792 0.97873 0.98049 0.893445 0.73365

Naïve Bayes
P 0.89801 0.997901 0.798 0.99891 0.89801 0.89801 0.99891 0.9345 0.993945 0.7638

RC 0.936352 0.98882 0.924 0.92828 0.936352 0.936352 0.92828 0.9744 0.9849 0.8844
F1-Score 0.97873 0.99891 0.8085 0.97873 0.97873 0.97873 0.97873 0.970485 0.99495 0.77385

Proposed
P 0.99891 0.95855 0.8295 0.96864 0.99891 0.97873 0.96864 0.990495 0.95475 0.79395

RC 0.98882 0.89801 0.9345 0.94846 0.98882 0.99891 0.94846 0.98049 0.89445 0.89445
F1-Score 0.999919 0.99891 0.924 0.99891 0.999919 0.927271 0.99891 0.991496 0.99495 0.8844

Fig. (4). Local analysis for varying edge-IoT devices for proposed model.

Retailers, Table 11 is for Wholesalers & Raw Material
Manufacturers, Table 12 is for Investors, Table 13 is for
Drug  Manufacturers,  and  lastly,  Table  14  is  for  PBM  &
Governance. Algorithm 1 will collect sample data from all
10  stakeholders,  and  in  the  loop,  Algorithm  2  will  run
multiple  times  to  detect  the  attack  and  will  update  the
stakeholder's  state  in  Q-Table.  Tables  5-14  display  the
results achieved with the suggested approach for the same
metrics.  The  suggested  model  works  well  in  predicting
various assaults. Different types of attacks include: Social
engineering  attacks,  Cryptography  attacks,  Control
Hijacking  attacks,  Computer  network  attacks,  Phishing
attacks, Malware attacks, Password attacks, DDoS Attack,
Identity-Based Attacks, and DoS Attacks. All stakeholders
will be identified for these attacks. So we have 10 tables
as  a  result  for  each  stakeholder  by  running  different
algorithms  for  attack  detection.\color{black}  The

suggested  approach  achieves  high  accuracy  rates  of
93.98% for  precision,  94.42% for  recall,  and  96.67% for
F1-Score for diverse assaults, including Social engineering
attacks, Cryptography attacks, Control Hijacking attacks,
Computer  network  attacks,  Phishing  attacks,  Malware
attacks,  Password  attacks,  DDoS  Attack,  Identity  Based
Attacks, DoS Attacks. Compared to current strategies, our
suggested  model  outperforms  all  others  and  achieves  a
high  detection/accuracy  rate  for  16-class  classification.
Fig.  (4)  illustrates  the  local  analysis  performance  of  the
proposed model  on several  edge IoT devices with varied
patient counts. Using the EOT framework, we utilized an
Intel i7-3200 CPU with three cores and a virtual machine
with  32GB  RAM  and  3.2GHz  for  local  and  global
processing.  Increasing  data  size  results  in  a  linear
speedup  for  the  suggested  model.  The  distributed
technique significantly reduces performance overhead by



18   The Open Bioinformatics Journal, 2025, Vol. 18 Devliyal et al.

reducing global  and local  processing steps based on the
number  of  virtual  machines.  Different  Edge  IoT  devices
are used to determine the time difference between single,
8,  and 16 devices for  a specific  number of  patients.  Fig.
(5)  illustrates  the  performance  study  of  a  simulated
dataset across several edge IoT devices. Fig. (6) depicts a
study  of  accuracy  for  synthetic  datasets  with  varying

numbers  of  data  points.  Distributed  analysis  requires  a
shorter  execution  time  than  centralized  analysis.  The
accuracy  varies  according  to  the  size  of  the  data  set.
Furthermore,  VMs  with  a  range  of  1%  to  20%  may  be
impacted. In the end, we did a comparative analysis of all
algorithms  for  all  stakeholders  and  found  that  the
proposed algorithm best determines the precision, recall,
and F1 score, which is shown in Fig. (7).

Fig. (5). Data analysis performance for local analysis on varying edge-IoT devices.

Fig. (6). Accuracy analysis for synthetic dataset.
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Fig. (7). Comparative analysis among algorithms.

CONCLUSION & FUTURE SCOPE
This  paper  proposes  an  Edge  of  Things  (EoT)-based

centralized  Multi-Source  Transfer  Learning  system  to
analyze  cybersecurity  attacks  in  pharmaceutical  care
services.  This  model  focuses  on  assessing  machine
learning-based intrusion detection systems in a centralized
mode. We utilized principal component analysis to extract
16  major  features  from  three  datasets  and  analyzed
accuracy, precision, recall, and F1-score for the suggested
model.  The  simulation  results  of  the  proposed  study  are
compared  to  existing  machine-learning  approaches.  The
suggested model outperforms existing models,  achieving
more than 95% accuracy in detecting diverse attacks. In
the future, we aim to investigate multi-class classification
performance  using  additional  datasets  and  feature
selection  strategies.  The  key  constraint  of  this  proposed
work  is  the  impact  of  training  settings  on  model
performance. Furthermore, the spread of Edge IoT devices
is  limited,  and  other  distributions  cannot  be  obtained
owing to time constraints. The execution duration of our
model grows with more patient data. However, we would
prefer  to  use  this  effort  to  address  the  constraint  as  a
future concern.
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