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Abstract: The inference of large-scale gene regulatory networks from high-throughput data sets has revealed a diverse 

picture of only partially overlapping descriptions. Nevertheless, several properties in the organization of these networks 

are recurrent, such as hubs, a modular structure and certain motifs. Several authors have recently claimed cell systems to 

be stable against perturbations and random errors, but still able to rapidly switch between different states from specific 

stimuli. Since inferred mathematical models of large-scale systems need to be extremely simple to avoid overfitting, these 

two features are hard to attain simultaneously for a model. Here we review and discuss possible measures of how system 

stability and flexibility may be manifested and measured for linearized models based on systems of ordinary differential 

equations. Furthermore, we review how the network properties mentioned above together with the nature of the interac-

tions contribute to these systems level properties. It turns out that the presence of repressed hubs, together with other phe-

nomena of topological nature such as motifs and modules, contribute to the overall stability and/or flexibility of the 

model. 
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INTRODUCTION 

 Networks have during more than one decade now been 
extensively used as a unifying language for describing di-
verse systems, including social contacts, power grids, airport 
connections, ecological food webs and also diverse inter and 
intra cellular systems. Among the intra cellular systems there 
are several different types of networks, ranging from de-
scriptions of physical interactions of proteins, to detailed 
metabolic and regulatory networks describing biochemical 
reactions. Regulatory networks, defined from the interaction 
maps of proteins, RNA molecules metabolites and the ge-
nome, determine in combination with detailed kinetics the 
cellular responses to input signals and govern cellular dy-
namics [1]. Some parts of these huge systems are well ex-
plored, e.g., the yeast cell cycle [2], the lambda switch [3], 
and the SOS pathway [4], but still many of the parts are un-
known. However, the learning of biological networks is es-
sential for both the understanding of how cell systems work 
and for making predictions of cellular responses. Although 
measurements of several of these molecular units are avail-
able at large-scales, the information is limited due to the size 
of the system which contains several thousands of units for 
many organisms. The major sources of information utilized 
in inference processes have often been the high-throughput 
data sets measuring gene expression (e.g., microarrays), in-
teraction maps derived from other experimental techniques 
(e.g., ChIP-chip) and biological knowledge originating from 
text mining [5]. 

 A popular simplifying approach is to project transcripts 
and proteins on the associated coding genes, and disregard  
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the metabolites. The corresponding effective gene-to-gene 
network is called a Gene Regulatory Network, GRN (also 
known as influence network [5] or gene network [6]), and 
describes regulations directly between genes, although the 
full regulatory system contains complex interactions among 
all these entities. This projection leads to loss of details in 
the model, but is probably a necessary simplification due to 
sparseness of data from similar conditions. Data sparseness 
is indeed a major problem for large-scale modeling projects; 
despite the increasing amount of available high-throughput 
data sets we still have few experiments from the same condi-
tion measuring different entities (e.g., mRNA and protein 
concentrations). That is, integration of various data sources 
is crucial, but impeded by different standards between plat-
forms and experimental conditions. Thus, large-scale regula-
tory network models are still today mainly constructed as 
projections of the full regulatory system onto subspaces, 
which contain fewer units and fewer interactions due to the 
limited number of included conditions. Also, these interac-
tions do not necessarily correspond to biochemical reactions 
or to physical interactions between proteins and targets; in-
stead they correspond to the effective impact of the regulator 
gene on its downstream target. Although this reduction 
sometimes can be considered as a severe limitation, it also 
has positive effects. For example, it enables a comparison of 
network properties for models obtained by different infer-
ence approaches. Moreover, we may have both pieces of 
structural information and qualitative information available 
of the same gene, thus we increase the amount of informa-
tion known per unit.  

 Even with detailed knowledge of the kinetic framework 
in the full system, it would generally be hard to deduce the 
functional form of the kinetics in the gene space in practise. 
This is due to the fact that the functional form of the “effec-
tive” kinetics in the projected gene space may largely depend 
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on the exact model parameters of the full system. Since in-
ference approaches do not know the model parameters in 
advance they should either be based on non-parametric adap-
tive models or “simple-enough” models as we are short of 
data. In the present presentation, we focus on the “simple-
enough” models in the form of gene regulatory networks. 
Due to lack of rigidity in the model assumptions the outcome 
should be taken with some care, thus it should be validated a 
posteriori. Ideally, this validation should contain the valida-
tion of individual edges and of responses of the system to 
perturbations. The validation could be done experimentally 
or more cost-effective by reusing available databases (not 
utilized in the inference process, of course). However, sev-
eral research groups have reported networks depending on 
different data sources with a great variability [7]. This 
stresses the complexity of the true regulatory system and 
also opens the question about other sources of validation. 
The variability among the models may be the result of either 
conceptual differences of the approaches or improper model-
ing (see below).  

 The gene regulatory networks are effective by nature [6] 
and context dependent [8], e.g., some metabolites/proteins 
may be needed to activate a TF (e.g., phosphorylation), or 
recruiting proteins bringing the TF to the promoter may be 
needed for a regulatory interaction to work [9]. Thus, these 
networks represented by the active parts of the regulatory 
networks are indeed condition specific. 

 Further, the research area is still in a premature stage and 
a lot of development is going on. For example, in 2006 Cali-
fano and Stolovitzky initiated the Dialogue for Reverse En-
gineering Assessments and Methods (DREAM) [10], where 
groups have been assessing the performance of their algo-
rithms in different challenges. The DREAM challenges have 
been held annually thus far, and in addition to the competi-
tion it provides great benchmark sets and evaluation criteria 
for the development of algorithms. The challenges concern-
ing large-scale network identification have so far been unre-
alistic by the amount of (in silico) data available, but still 
they constitute the hallmarks known to date and have there-
fore provided important insights. From the perspective of 
integrating various data types, denoted as “crucial” above, 
the DREAM challenge of 2008 was interesting. Here Yip et 
al. [11] presented an interesting winning strategy how steady 
state and time-series expression data effectively can be inte-
grated to infer edges. Moreover, Gustafsson et al. [12] 
showed how uncertain a priori information about gene inter-
actions from large-scale experiments as well as expression 
sets from other conditions may be utilized to improve predic-
tion accuracy of expression levels. 

 The models utilized to describe the time-evolution of the 
gene levels with gene regulatory networks may be classified 
with respect to the number of states per node they allow. The 
Boolean networks [13] and threshold networks [14] are both 
ideal two state modeling formalisms. They approximate the 
activity of each gene as being either simply on or off, which 
is motivated if the upper or lower limit of the gene activity 
often is attained. However, this approximation discards all 
intermediate steps and may therefore be of interest for mod-
eling multiple conditions within the same framework, but is 
probably not suitable for modeling a cell around a stable 
working point (e.g., the cell cycle). The Bayesian networks 

are another modeling framework [15], which is more flexible 
and can also allow for multiple states per node and can even 
be extended to model continuous levels [16]. Also models 
based on Ordinary Differential Equations (ODE-models) 
assume a continuum of activity levels, thus both are particu-
larly suitable to model systems around a working point. 
However, for the Bayesian networks it takes either much 
more data for inference or further a priori assumptions (e.g., 
restricting the degree distribution) to model continuity, 
which is problematic since already a Bayesian Network with 
two levels demands much training data. On the other hand, 
with proper restrictions (regularizations) that are biologically 
motivated (e.g., lasso, ridge, or elastic-net [17]) the ODE-
models are both computationally tractable and may need 
fewer experiments for inference than the former categories. 
Interestingly, the best performing teams of the DREAM2 
and DREAM3 network inference challenges have utilized 
models based on structure and parameter estimation for 
ODEs [7, 11, 18, 19]. 

 Despite the large network variability over individual 
edges that has been reported [7], there are several topological 
findings that the community seems to agree upon. These 
findings include the presence of hubs regulating peripheral 
nodes, particular motifs (i.e., recurrent sub-graphs) and a 
modular network structure. It seems that these features are 
characteristic for gene regulatory networks (as well as for 
many other complex networks). In here, we will discuss and 
review how these findings contribute to the overall system 
dynamics. We will focus the discussion to some recent work 
by Gustafsson et al. [7], which inferred and analyzed a ge-
nome-wide gene regulatory network from time-series pro-
files of mRNA-levels measured during the yeast cell cycle. 
The inference was carried out for a linearized version of the 
ODE-system describing the expression dynamics and by 
using sparsity as a prior assumption (i.e., keeping the regula-
tions simple) [20]. This inference identified interactions, 
simultaneously with the strength, direction and whether it 
had an activating or repressing effect. Together with the sys-
tem of linearized equations this sets the stage for a dynami-
cal system analysis around the working state of the cell cy-
cle. The purpose of the analysis is to determine what the 
topological and dynamical pieces bring together to produce a 
system that is stable against noise yet responsive to stimuli.  

 In Fig. (1) we show a schematic overview of the method-
ology, which goes from high-throughput experimental data 
(left), to a network model (middle), which we subsequently 
can draw conclusions from (right). Conclusions may be 
drawn both about the topology of the inferred network, i.e., 
how it is organized, and also about its dynamical properties, 
e.g., its stability against noise and its ability to respond to 
stimuli. 

 The rest of the paper is organized as follows. In the next 
section, Dynamics, Stability and Flexibility, we introduce 
and review the concepts of dynamics, system stability and 
flexibility, clarifying the various meanings of the words in 
the present context. Thereafter, in section System Analysis, 
we review topological and global dynamical findings about 
hubs, as well as discuss features beyond hubs such as motifs 
and modules and their impact on system stability and flexi-
bility. We end the paper with a summary and an outlook. 
Throughout the paper, we have tried to avoid mathematical 
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formulas, and instead we refer to the references for the 
reader interested in exact formulations.  

DYNAMICS, STABILITY AND FLEXIBILITY 

 There is a need to clarify our usage of the concepts dy-
namics, stability, and flexibility since they are frequently 
employed for networks within the systems biology commu-
nity with multiple meanings.  

 Dynamics is widely used for cellular networks for both 
the topological evolution of networks [1, 21-23] as well as 
for describing expression dynamics [7, 24, 25]. The former 
includes both addition and removal of nodes and edges, as 
well as rewiring, and can in the context of cellular networks 
be thought of as representing the long term evolution over 
several generations based on Darwinian selection. The latter 
describes how the values of the nodes vary for a network 
with a fix topology. For ODE-models of gene regulatory 
networks, this means the trajectories in state-space which the 
differential equations trace. A biological interpretation is the 
relatively short term fluctuations of gene levels over parts of 
an individual life time, e.g., the variation over the cell cycle. 
We will here use the word dynamics to refer to this latter 
variation of gene levels within the network model. 

TRADITIONAL DEFINITIONS OF STABILITY 

 There are several forms of stability, such as structural 
stability, marginal stability and dynamical stability, and also 
several reviews in the field discussing these concepts with 
not totally identical definitions [26-28]. In the present pres-
entation, we will utilize a stability concept suitable for the 
kind of dynamics we are interested in. Since we are dealing 
with linearized ODE-systems, a tentative definition of stabil-
ity is: 

 A model is (dynamically) stable if any perturbation of a 
state fades away after some time.  

 Of course, also other stability concepts could be of inter-
est, such as stability referring to the effect on the solution 
paths from a perturbation of the model parameters (some-

times called structural stability [26]), or stability of the 
model to changes of topological quantities such as edge re-
movals (sometimes called topological stability) [21]. Worth 
noting, the authors of the work [21] concerning topological 
stability concluded that networks with only a few well con-
nected hubs were stable (or ”robust”, as they phrased it, a 
terminology followed by others [29]) against most random 
removals, but extra sensitive towards removal of some spe-
cific edges (fragile). Although these forms of stability 
probably are of great importance for some networks, where 
the main source of errors is edge failures (e.g., power grids), 
we concentrate here on the form of (dynamical) stability 
defined tentatively above, in order not to grasp too much. On 
the scale of intracellular processes, the major source of per-
turbations for gene regulatory networks still comes from 
changes in the gene expression pattern, based on stochastic 
variation of expression values as well as external stimuli. 
However, the study of structural or topological stability will 
hopefully be a subject for future research also for biological 
networks, since from an evolutionary perspective it might be 
of importance, e.g., the impact of gene duplication and the 
effect of mutations in promoter regions.  

STABILITY AND FLEXIBILITY FOR LINEARIZED 
ODE-MODELS OF GRNs 

 Dynamical stability in ODE-models is often determined 
by analyzing the linearized equations around a working 
point. It is then easy to compute the trajectory of any expres-
sion state from the eigenvectors and eigenvalues of the Jaco-
bian matrix, given that it stays close enough to the working 
point were the linearization is still valid. This matrix can be 
considered as a generalization of the adjacency matrix and 
each element contains the regulatory strength and nature 
(activation/repression) of the directed interaction. Also, our 
tentative definition of (dynamical) stability can from a 
mathematical point of view be phrased such that the real part 
of all eigenvalues of the matrix should be negative [7]. Fur-
thermore, the eigensolutions to the Jacobian matrix describe 
either exponentially growing (or decaying) states or oscilla-

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Map of the steps from experiments to knowledge, and a summary of important features in the organization and their impacts. In 

principle, all data types mentioned at the left hand side can be utilized for inferring gene regulatory networks; although in the present presen-

tation we discuss networks based solely on mRNA-data. 
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tory states. Conventional analysis for linear systems then 
concludes that the presence of any growing state eventually 
will lead to system instabilities, due to noise. This may be 
problematic in a large complex system (with sufficiently 
number of edges) if it is not properly tuned, since increased 
complexity leads to an increased probability for instabilities 
in random systems [30] (which, however, may be compen-
sated by a strong self-degradation in the system). In a series 
of work Sinha et al. [31-33] studied the impact of some topo-
logical features on stability. In particular, they concluded 
that the presence of hubs (with random sign distribution) 
increases the probability of some growing eigenstates, which 
may be compensated for by a modular organization. Notably, 
their studies reveal that dynamical stability in the classic 
strict sense is less probable with the heavy tailed out-degree 
distribution found in gene networks by other groups [20, 34]. 
These studies reveal interesting couplings between topology 
and dynamical stability, but completely lack the influence of 
the model parameters on the dynamical stability. This influ-
ence is probably crucial for gene regulatory networks, since 
some studies have observed an intricate balance between 
activation and repression [7, 24].  

 The flip-side of dynamical stability is the responsiveness 
of the system to stimuli to switch into new working states; 
evidently this flexibility comes on the expense of stability in 
the system. In a Boolean setting a system with a compromise 
between these two is called critical and a recent study by 
Balleza et al. [35] revealed several different organisms to 
have topologies and model parameters to facilitate a near 
critical system. Even though our primary interest in this arti-
cle is networks with an ODE dynamics, the studies of Boo-
lean networks [13, 35] are of importance for the discussion 

of system stability in gene regulatory networks since not 
much have been studied for ODEs.  

 When a stability analysis is performed for a linear sys-
tem, a single growing eigenstate will induce instability of the 
whole system. On the other hand a growing eigenstate in the 
linearization of a non-linear model may also reflect a switch 
to a new working point. For example, linear instabilities are 
deliberately used in some air-fighters control system to in-
crease its maneuverability [36]. Hence, in a gene regulatory 
network, a growing eigenstate may reflect a fast switch from 
the current working state to some other which beneficially 
should be rapid, e.g., a switch from the cell cycle to stress 
conditions. However, as the presence of growing eigenstates 
leads to a drift from the current working point, which must 
be compensated by non-linear effects, growing eigenstates 
must be utilized only cautiously to be advantageous for the 
regulation of the cell. Therefore to reflect this system flexi-
bility, but also because of errors when inferring a large com-
plex network on noisy incomplete data, a linearized model of 
a gene regulatory network will most probably contain some 
(but not too many) fast growing eigenstates. The definition 
of stability based on its eigenvalues needs as a consequence 
to be adapted. 

REDEFINING STABILITY AND QUANTIFYING 
FLEXIBILITY 

 To quantify the degree of responsiveness to selective 

stimuli and the stability against noise for line-

arized/incomplete gene regulatory networks, Gustafsson et 

al. [7] made an adaptation of the two quantities flexibility 

and stability based on the distribution of the growth rates 

(i.e., on the real parts of the corresponding positive eigenval-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Illustration of the concepts of flexibility and stability based on the distribution of real parts of the eigenvalues to the Jacobian ma-

trix. Each curve corresponds to one network, and the integral of the curve (that is, the area under the curve) corresponds to the number of 

growing eigenstates. The vertical axis depicts the density of states corresponding to a certain growth speed given by the horizontal axis. In 

(a) we can see two curves corresponding to two networks with the same stability but with different flexibilities. The network with a relatively 

uniform density of growing eigenstate growth rates (blue solid curve) has a lower flexibility than the network with a skewed distribution (red 

dashed curve). The right figure (b) depicts two networks with same flexibility but different stabilities, which is manifested from the two dis-

tributions sharing the shape.  
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ues) of the growing eigenstates, suitable for GRNs. Now, 

instability is first defined as the normalized sum of ampli-

tude growth rates of all growing eigenstates. Thus, this sum 

is positively correlated to the rate with which the system 

drifts due to random fluctuations from the linearized state. 
Thereafter, stability is defined as one minus the instability. 

 Next, given an arbitrary stability, it is informative to 

study the source of it, i.e., how the growth rates of the insta-

bilities are distributed. A distribution of growth rates like the 

blue solid curve in Fig. (2a) reflects a non-specific diver-

gence, i.e., the drift will go in a random direction spanned by 

the growing eigenstates. Contrary, a skewed spectrum of 

growth rates like the red dashed curve in Fig. (2a) reflects 

that the divergence will relatively quickly be confined to a 

small subspace (spanned by the most rapidly growing eigen-

states). Therefore, in Gustafsson et al. [7] flexibility was de-

fined from the skewness of the distribution of the growth 

rates of the growing eigenstates (see [7] for exact definition), 

which then reflects the specificity of the drift. In Fig. (2b) 

we have the opposite situation of Fig. (2a), with two net-

works with growth rate distributions corresponding to the 
same flexibility but different stabilities.  

SYSTEM ANALYSIS 

 In order to understand the effect of the global topological 

design principles in gene regulatory networks, it is important 

to analyze their corresponding impact on the dynamics of the 

system. Below we will review some important topological 

findings in gene regulatory networks, and how they contrib-

ute to the system stability and flexibility. We call an analysis 

based on these concepts for a (dynamical) system analysis, 

since it is based on the possible dynamical states of the sys-
tem from its organization.  

 In Fig. (3) we see a system analysis more exactly, a de-

piction of stability and flexibility) of the Yeast network 

(mentioned in the Introduction, inferred from genome-wide 

microarray data in time-series from the cell cycle by impos-

ing a sparse linear ODE-model, originally derived in [20]). 

Moreover, we see several ensembles of networks, with in-

creased similarity to the Yeast network. From the difference 

of the ensemble averages and the corresponding standard 

deviations with various topological features of interest kept 

constant, it is possible to determine the impact (and the sta-

tistical significance) of these topological features. Each point 

in the coordinate system of Fig. (3) corresponds to a net-

work, or an ensemble of networks, relating to a curve similar 

to those presented in Fig. (2). For example, the blue solid 

and red dashed curve of Fig. (2a) should give rise to two 

separate points in Fig. (3), where the point corresponding to 

the red dashed curve is positioned higher up than the point 

corresponding to the blue solid curve, reflecting the non-

skew distribution for the blue curve, but at the same horizon-

tal position since they have the same stability. Thus, the net-

works in the upper part of Fig. (3) have skewed distributions 

of growth rates, i.e., they are dominated by a few growth 

eigenstates. Moreover, the curves of Fig. (2b) correspond to 

two points with different horizontal position, but same verti-

cal, since they have the same flexibility but different stabil-
ities.  

HUBS 

 Hubs, that is, nodes with a large number of incoming or 
outgoing connections, have been observed in various bio-
logical and other networks since the late 1990’s [1, 21, 38-
40], when the global effect of hubs in a network was sug-
gested by Barabasi and Albert to produce a system stable 
against random failures, yet fragile towards targeted attacks 
(i.e., topological stability). In a gene regulatory network a 
significant portion of the transcription factors (TFs) was 
shown to act as regulatory hubs [34, 41] which then may act 
as master switches between different states of the cell. 
Moreover, Maslov and Sneppen [41] demonstrated that regu-
latory hubs in the yeast transcriptional network tend to regu-
late genes with low in-degree (peripheral genes) on average 
(assortative mixing). This suggests that many regulatory 
hubs are not master switches; instead their main goal is to 
mediate a signal in a cost efficient manner. Furthermore, two 
recent studies [7, 24] reported these hubs to be kept quiet by 
a negative in-regulation. All these aspects associated to hubs 
may contribute both to the dynamical stability and flexibility 
of the system. In Fig. (3) we isolate the effect of the presence 
of hubs, and the regulation of hubs, in two of the steps be-
tween ensembles.  

 In the first step for hubs, the first arrow of Fig. (3), we 
explore the topological effect of having out-degree hubs as 
well as a high portions of genes with out-degree zero (non-
regulators). This is done by comparing two ensembles of 
networks with the same number of nodes and edges, but dif-
ferent topologies. The Erdös-Renyi (ER) network ensemble, 
obtained from a random distribution of edges among the 
nodes, and the ensemble with the same degree distribution as 
the inferred Yeast network (REWIRED), obtained from the 
randomization process developed by Maslov and Sneppen 
[37], have the same numbers of nodes and edges, and also 
have the same weights, but have different degree distribu-
tions. The ensemble of ER-networks has a degree distribu-
tion following a Poissonian curve, and hence contains no 
hubs, while the REWIRED ensemble, having the same de-
gree distribution as Yeast Topology, has a broad distribution 
of out-degrees and hence contains several hubs [20]. Strik-
ingly, the REWIRED ensemble has both significantly higher 
stability and flexibility. This may intuitively be understood 
from the introduction of both a small portion of genes with 
high regulatory influence on others (hubs) and from a large 
portion of genes with no influence (non-regulators). The 
large fraction of non-regulators induce an equal amount of 
non-growing eigenstates, since if we perturb one of these 
genes it could not propagate downstream the network, hence 
a perturbation of a random gene in the REWIRED ensemble 
has lower probability to be of growing nature than a pertur-
bation of a random gene in one of the networks in the ER 
ensemble, thus making REWIRED more stable than the ER. 
On the other hand a perturbation of any of the regulatory 
hubs is likely to propagate downstream in a few steps and 
due to the complex network structure grow quickly. For sta-
bility we see that the presence of non-growing eigenstates 
(from the non-regulators) is of most importance, while it is 
the presence of only some fast growing eigenstates (a small 
portion of hubs) for flexibility. These intuitive arguments are 
analogous to the ones proposed by Barabasi and Albert [39], 
mentioned above, to explain the degree distribution observed 
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in the protein-protein network, in which case the non-
regulators induce robustness to random deletion and hubs 
induce fragility to targeted attacks.  

 For the second step concerning hubs, the third arrow of 
Fig. (3) (seen at the inset), we explore also the dynamical 
effect from the organization of repression and activation. 
This is the step “Add regulation on hubs”, which separates 
the ensemble Yeast Topology corresponding to networks 
with identical structure to the inferred network, but random-
ized signs and weights and the ensemble Repressed Hubs 
with the same topology and also identical signs and weights 
as the Yeast network on all ingoing regulations to regulatory 
hubs (now defined as nodes with out-degree of two or more), 
but with all other signs and weights randomized. Here we 
can see that the particular direct regulation of the hubs in-
creases the stability of the system, with the expense of its 
flexibility. Since there is an excess of negative regulations 
for these hubs [7], this probably come from a stabilization of 
the fastest growing states, which both has an increasing ef-
fect of the stability and a decreasing effect of the flexibility. 
It is likely that the fastest growing states are to be the targets 
of the in-regulation of hubs, since they form the computa-
tional core [41] and therefore are crucial as master switches 
between different working points.  

BEYOND HUBS – MOTIFS AND MODULES 

 Evidently, the degree distribution is an important design 
principle, which both has high descriptive power of the ar-
chitecture of gene networks and great impact on the network 
dynamics. However, to describe and gain understanding of 
the system it is necessary also to study features which in-
volve the interaction of several entities.  

 Several authors have found recurrent graph structures 
called motifs to be significant for networks [23, 42]. They are 
frequently associated with specific structures of the dynami-
cal parameters [7, 22, 23], e.g., the signs in the Feed Forward 
Loop (FFL) are often organized to yield coherent signals to 
the downstream target. The dynamical effect of some motifs 
in isolation has been studied in experimental detail [22] and 
also their frequencies were shown to change considerably 
between exogenous and endogenous processes [8]. 

 Another popular concept which is frequently reported in 
the context of networks is modules. The core idea is that a 
module is a functional unit which works relatively isolated 
and performs a specific task; hence it consists of genes with 
a high degree of process similarity [43]. For a gene regula-
tory network, this can be a group of genes where several of 
the genes in the module share a common GO process annota-
tion [44]. In engineered systems, modules may be stable (in 
both our meaning and in the topological meaning [45]) 
subunits performing different tasks. In biological systems, 
modularity brings an evolutionary flexibility to the system, 
and recent studies suggest it origins from time-varying evo-
lutionary goals [46, 47], with each module serving its own 
special task. Despite the general consensus about modularity 
in networks describing cells, the concept of modules has 
been used in various ways (but still motivated from a high 
process similarity within the modules [43, 48, 49]). The first 
attempts used time-series clustering to detect gene clusters 
with a high degree of process similarity [48]. More recently, 
network approaches originally based on the graph theoretic 
concept of tightly connected sub-graphs, called communities 
[50], have been applied to the same problem. Furthermore, 
integrated approaches [49, 51, 52] taking into account both 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Stability and flexibility for the inferred network (Yeast) and several randomized versions thereof. The error bars cover two standard 

deviations for each ensemble of networks (see text). Starting in the lower left corner of the figure, we have the ensemble of ER-like net-

works, thereafter successively more and more topological and dynamical features are added to the network, thus obtaining new ensembles of 

networks more and more similar to the Yeast network. All ensembles contain the same model parameters (see text), but are randomized in 

various ways. 
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structural and expression data have also been developed for 
this problem, see Wang et al. [52] and references therein for 
a review on the subject. However, it was observed [7] that 
methods based on communities and methods based on co-
expression approaches may lead to completely different 
modules/clusters. Evidently, both co-expression based clus-
tering and network clustering detect gene sets with high 
process similarity, but otherwise little in common. Moreover, 
some studies have revealed that modules can be organized 
into meta-modules [53] in a hierarchical structure [1].  

 From a dynamical system analysis point of view the indi-
vidual effects from all topological aspects beyond hubs are 
hard to deduce. However, in Fig. (3) we can detect in the 
second step the combined effect on stability and flexibility 
for all topological phenomena consistent with the present 
degree distribution. This is illustrated by the arrow “Add 
modules & motifs”, which separates the REWIRED ensem-
ble of networks sharing only the node degree distribution 
with the Yeast network, from the Yeast Topology ensemble 
of networks with the exact same topology as the Yeast net-
work, but randomized signs and weights. In [7] it is shown 
that the Yeast network has significantly higher density of 
motifs and modularity index than its rewired versions corre-
sponding to the REWIRED ensemble. The significant in-
crease in both stability and flexibility for this step indicates 
that these features are important for the system functionality. 
This is further repeated by the fourth and last arrow of Fig. 
(3) (seen at the inset), which separates the ensemble Re-
pressed Hubs from the Yeast network. That is, this arrow 
corresponds to settle the inferred weights and signs on all 
remaining edges, the edges going to non-regulators. Since 
the Yeast network has the highest stability and also flexibil-
ity of the two, i.e., the arrow points upwards to the right, this 
reflects that the weights and signs on the edges to the non-
regulators are organized to make the system stable yet flexi-
ble.  

SUMMARY AND OUTLOOK 

 The understanding of gene regulatory networks inferred 
from experimental data is of great importance for under-
standing complex diseases and crucial for modeling cells in 
silico. Although the details of these systems are under de-
bate, several statistical characteristics regarding the topology 
and dynamics are fairly consistent across different studies. 
Indeed, some parts of the regulatory systems are known, and 
some of them in terms of non-linear differential equations. 
However, to learn a large-scale model, possibly genome-
wide, the experimental data are limited, and therefore simple 
models are still important. This includes rough dynamical 
descriptions by models based on linear first order ordinary 
differential equations. These models are computationally 
tractable and possible to regularize to fit into the problem of 
the limited amount of data. Further, the dynamics of line-
arized ODE network models is analytically tractable, but the 
analysis reveals that most of the models are unstable in a 
strict sense. However, by focusing on the fact that linear 
models of biological systems are only crude linearizations of 
the true systems, one can modify the conventional stability 
concept of linear systems into a system analysis of biological 
systems. In here, we discussed these new concepts and their 
relation to topological features and dynamical design princi-
ples recently found in gene regulatory networks. The intro-

duction of the investigated topological features (motifs and 
modules, and hubs, respectively) increased both stability and 
flexibility. Furthermore, we presented a study on the effects 
of repressed hubs, and of signs and weights on edges going 
to non-hubs. The effect of a high fraction of repressed hubs 
was found to produce a system more stable against noise but 
less flexible. The effect of having the “true” distribution of 
signs and weights on edges going to non-hubs, i.e., the dis-
tribution inferred from real data, was to increase both system 
stability and flexibility. The clear trend of the studied topo-
logical features to high stability and flexibility and the high 
separation of ensembles stress the meaning of the concepts 
and the importance of a system analysis. In the future, we 
believe these concepts will play important roles both for an 
increased understanding of the gene regulatory network 
models and for discriminating among such models. How-
ever, they first need to be further refined to better fit systems 
of various sizes before one can start to make comparisons 
between networks for other processes or organisms. It would 
also be very interesting to include topological changes into 
the framework in order to shed further light on the evolution 
of networks. 

ACKNOWLEDGEMENTS 

 The authors acknowledge financial support from 
CENIIT, the Centre for Industrial Information Technology at 
Linköping Institute of Technology, Sweden. 

REFERENCES  

[1] A. L. Barabasi and Z. N. Oltvai, "Network biology: understanding 
the cell's functional organization," Nat. Rev. Genet., vol. 5, pp. 101-

113, Feb. 2004.  
[2] M. Ptashne, A Genetic Switch: Phage Lambda Revisited, 3rd ed. 

Cold Springs Harbor, New York: Cold Spring Harbor Laboratory 
Press, 2004.  

[3] K. C. Chen, A. Csikasz-Nagy, B. Gyorffy, J. Val, B. Novak and J. 
J. Tyson, "Kinetic Analysis of a Molecular Model of the Budding 

Yeast Cell Cycle," Mol. Biol. Cell, vol. 11, pp. 369-391, Jan. 2000.  
[4] T. S. Gardner, D. di Bernardo, D. Lorenz and J. J. Collins, "Infer-

ring genetic networks and identifying compound mode of action 
via expression profiling," Science, vol. 301, pp. 102-105, Jul. 2003.  

[5] M. Hecker, S. Lambeck, S. Toepfer, E. van Someren and R. 
Guthke, "Gene regulatory network inference: data integration in 

dynamic models-a review," BioSystems, vol. 96, pp. 86-103, Apr. 
2009.  

[6] P. Brazhnik, A. de la Fuente and P. Mendes, "Gene networks: how 
to put the function in genomics," Trends Biotechnol., vol. 20, pp. 

467-472, Nov. 2002.  
[7] M. Gustafsson, M. Hörnquist, J. Björkegren and J. Tegnér, "Ge-

nome-Wide System Analysis Reveals Stable yet Flexible Network 
Dynamics in Yeast," IET Syst. Biol., vol. 3, pp. 219-228, 2009.  

[8] N. M. Luscombe, M. M. Babu, H. Yu, M. Snyder, S. A. Teichmann 
and M. Gerstein, "Genomic analysis of regulatory network dynam-

ics reveals large topological changes," Nature, vol. 431, pp. 308-
312, Sep. 2004.  

[9] M. Ptashne and A. Gann, Genes & Signals. Cold Spring Harbor, 
New York: Cold Spring Harbor Laboratory Press, 2002.  

[10] G. Stolovitzky, D. Monroe and A. Califano, "Dialogue on reverse-
engineering assessment and methods: the DREAM of high-

throughput pathway inference," Ann. N. Y. Acad. Sci., vol. 1115, 
pp. 1-22, Dec. 2007.  

[11] K.Y. Yip, R.P. Alexander, K.K. Yan and M. Gerstein, "Improved 
Reconstruction of In Silico Gene Regulatory Networks by Integrat-

ing Knockout and Perturbation Data", PLoS One, vol. 5(1): pp. 
e8121, 2010. [Online] Available: http://www.plos.org. [Accessed 

Aug. 5 2010]. 
[12] M. Gustafsson and M. Hörnquist. "Gene Expression Prediction by 

Soft Integration and the Elastic Net - Best Performance of the 
DREAM3 Gene Expression Challenge", PLoS One, vol. 5(2):  



Stability and Flexibility of GRNs Based on ODEs The Open Bioinformatics Journal, 2011, Volume 5    33 

p. e9134, 2010. [Online] Available: http://www.plos.org. [Accessed 

Aug. 5 2010]. 
[13] M. Helikar, N. Kochi, J. Konvalina and J.A. Rogers, "Boolean 

Modeling of Biochemical Network", Open Bioinformatics, vol. 5. 
pp. 16-25, 2011.  

[14] M. Hörnquist, "Scale-free networks are not robust under neutral 
evolution," Europhys. Lett., vol. 56, pp. 461-467, Nov. 2001.  

[15] J. Pearl, "Fusion, propagation, and structuring in belief networks," 
Artif. Intell., vol. 29, pp. 241-288, Sep. 1986.  

[16] S. Kim, S. Imoto and S. Miyano, "Dynamic Bayesian network and 
nonparametric regression for nonlinear modeling of gene networks 

from time series gene expression data," BioSystems, vol. 75, pp. 57-
65, July 2004.  

[17] H. Zou and T. Hastie, "Regularization and variable selection via the 
elastic net," J. R. Stat. Soc. Ser. B, vol. 67, pp. 301-320, 2005.  

[18] A. Scheinine, W. I. Mentzen, G. Fotia, E. Pieroni, F. Maggio, G. 
Mancosu and A. de la Fuente, "Inferring gene networks: dream or 

nightmare?" Ann. N. Y. Acad. Sci., vol. 1158, pp. 287-301, Mar. 
2009.  

[19] M. Lauria, F. Iorio and D. di Bernardo, "NIRest: a tool for gene 
network and mode of action inference," Ann. N. Y. Acad. Sci., vol. 

1158, pp. 257-264, Mar. 2009.  
[20] M. Gustafsson, M. Hornquist and A. Lombardi, "Constructing and 

analyzing a large-scale gene-to-gene regulatory network--lasso-
constrained inference and biological validation," IEEE/ACM Trans. 

Comput. Biol. Bioinform., vol. 2, pp. 254-261, Jul-Sep. 2005.  
[21] A. L. Barabasi and R. Albert, "Emergence of scaling in random 

networks," Science, vol. 286, pp. 509-512, Oct. 1999.  
[22] U. Alon, "Network motifs: theory and experimental approaches," 

Nat. Rev. Genet., vol. 8, pp. 450-461, Jun. 2007.  
[23] U. Alon, An Introduction to Systems Biology : Design Principles of 

Biological Circuits, Boca Raton, Fla.: Chapman and Hall/CRC, 
vol. 10, 2007.  

[24] A. Ma'ayan, G. A. Cecchi, J. Wagner, A. R. Rao, R. Iyengar and G. 
Stolovitzky, "Ordered cyclic motifs contribute to dynamic stability 

in biological and engineered networks," Proc. Natl. Acad. Sci. 
U.S.A., vol. 105, pp. 19235-19240, Dec. 2008.  

[25] R. Steuer, "Computational approaches to the topology, stability and 
dynamics of metabolic networks," Phytochemistry, vol. 68, pp. 

2139-2151, Aug-Sep. 2007.  
[26] S. Flach and C. R. Willis, "Discrete breathers," Physics Reports, 

vol. 295, pp. 181-264, March 1998.  
[27] A. Lesne, "Robustness: confronting lessons from physics and biol-

ogy," Biol. Rev. Camb. Philos. Soc., vol. 83, pp. 509-532, Nov. 
2008.  

[28] S. Nikolov, E. Yankulova, O. Wolkenhauer and V. Petrov, "Princi-
pal difference between stability and structural stability (robustness) 

as used in systems biology," Nonlinear Dynamics Psychol. Life 
Sci., vol. 11, pp. 413-433, Oct. 2007.  

[29] H. Kitano, "Computational systems biology," Nature, vol. 420, pp. 
206-210, Nov. 2002.  

[30] R. M. May, "Will a large complex system be stable?" Nature, vol. 
238, pp. 413-414, Aug. 1972.  

[31] S. Sinha and S. Sinha, "Evidence of universality for the May-
Wigner stability theorem for random networks with local dynam-

ics," Phys. Rev. E. Stat. Nonline Soft Matter Phys., vol. 71, article 
number 020902, Feb. 2005.  

[32] S. Sinha, "Complexity vs. stability in small-world networks," 
Physica A, vol. 346, pp. 147-153, Feb. 2005.  

[33] R. K. Pan and S. Sinha, "Modular networks emerge from multicon-
straint optimization," Phys. Rev. E, vol. 76, article number 045103, 

Oct. 2007.  
[34] T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph, G. 

K. Gerber, N. M. Hannett, C. T. Harbison, C. M. Thompson, I. 
Simon, J. Zeitlinger, E. G. Jennings, H. L. Murray, D. B. Gordon, 

B. Ren, J. J. Wyrick, J. B. Tagne, T. L. Volkert, E. Fraenkel, D. K. 

Gifford and R. A. Young, "Transcriptional regulatory networks in 

Saccharomyces cerevisiae," Science, vol. 298, pp. 799-804, Oct. 
2002.  

[35] E. Balleza, E. R. Alvarez-Buylla, A. Chaos, S. Kauffman, I. 
Shmulevich and M. Aldana, "Critical dynamics in genetic regula-

tory networks: examples from four kingdoms," PLoS One, vol. 3, 
pp. e2456, Jun. 2008.  

[36] R. Singh. The contenders: Gripen JAS-39. Feb. 2007. [Online] 
Available: http://www.domain-b.com/aero/gripen_jas-39.htm [Ac-

cessed Aug. 5, 2010]. 
[37] S. Maslov and K. Sneppen, "Specificity and stability in topology of 

protein networks," Science, vol. 296, pp. 910-913, May 2002.  
[38] R. Albert, H. Jeong and A.L. Barabasi, "Error and attack tolerance 

of complex networks," Nature, vol. 406, pp. 378-382, July 2000.  
[39] H. Jeong, S. P. Mason, A.L. Barabasi and Z. N. Oltvai, "Lethality 

and centrality in protein networks," Nature, vol. 411, pp. 41-42, 
May 2001.  

[40] H. Jeong, B. Tombor, R. Albert, Z. N. Oltavai, and A.L. Barabasi, 
"The large-scale organization of metabolic networks," Nature, vol. 

407, pp. 651-654, Oct. 2001.  
[41] S. Maslov and K. Sneppen, "Computational architecture of the 

yeast regulatory network," Phys. Biol., vol. 2, pp. S94-S100, Dec. 
2005.  

[42] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii and 
U. Alon, "Network motifs: simple building blocks of complex net-

works," Science, vol. 298, pp. 824-827, Oct. 2002.  
[43] M. Gustafsson, M. Hörnquist and A. Lombardi, "Comparison and 

validation of community structures in complex networks," Physica 
A, vol. 367, pp. 559-576, July 2006.  

[44] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. 
Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. 

Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. 
Matese, J. E. Richardson, M. Ringwald, G. M. Rubin and G. Sher-

lock, "Gene ontology: tool for the unification of biology. The Gene 
Ontology Consortium," Nat. Genet., vol. 25, pp. 25-29, May. 2000.  

[45] U. Alon, "Biological networks: the tinkerer as an engineer," Sci-
ence, vol. 301, pp. 1866-1867, Sep. 2003.  

[46] N. Kashtan and U. Alon, "Spontaneous evolution of modularity and 
network motifs," Proc. Natl. Acad. Sci. U.S.A., vol. 102, pp. 13773-

13778, Sep. 2005.  
[47] M. Parter, N. Kashtan and U. Alon, "Facilitated variation: how 

evolution learns from past environments to generalize to new envi-
ronments," PLoS Comput. Biol., vol. 4, pp. e1000206, Nov. 2008. 

[Online] Available: http://www.plos.org. [Accessed Aug. 5 
2010]. 

[48] M. B. Eisen, P. T. Spellman, P. O. Brown and D. Botstein, "Cluster 
analysis and display of genome-wide expression patterns," Proc. 

Natl. Acad. Sci. U.S.A., vol. 95, pp. 14863-14868, Dec. 1998.  
[49] E. Segal, M. Shapira, A. Regev, D. Pe'er, D. Botstein, D. Koller 

and N. Friedman, "Module networks: identifying regulatory mod-
ules and their condition-specific regulators from gene expression 

data," Nat. Genet., vol. 34, pp. 166-176, Jun. 2003.  
[50] M. Girvan and M. E. J. Newman, "Community structure in social 

and biological networks," Proc. Natl. Acad. Sci. U.S.A., vol. 99, pp. 
7821-7826, June 2002.  

[51] J. Ihmels, G. Friedlander, S. Bergmann, O. Sarig, Y. Ziv and N. 
Barkai, "Revealing modular organization in the yeast transcrip-

tional network," Nat. Genet., vol. 31, pp. 370-377, Aug. 2002.  
[52] X. Wang, E. Dalkic, M. Wu and C. Chan, "Gene module level 

analysis: identification to networks and dynamics," Curr. Opin. 
Biotechnol., vol. 19, pp. 482-491, Oct. 2008.  

[53] P. Langfelder and S. Horvath, "Eigengene networks for studying 
the relationships between co-expression modules," BMC Syst. Biol., 

vol. 1, pp. 54, Nov. 2007.  
 

 

 

Received: October 01, 2009 Revised: August 06, 2010 Accepted: August 06, 2010 

 

© Gustafsson and Hörnquist; Licensee Bentham Open. 

 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License  
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the 

work is properly cited. 


